skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 25, 2026

Title: Using Confidence Scores to Improve Eyes-free Detection of Speech Recognition Errors
Conversational systems rely heavily on speech recognition to interpret and respond to user commands and queries. Despite progress on speech recognition accuracy, errors may still sometimes occur and can significantly affect the end-user utility of such systems. While visual feedback can help detect errors, it may not always be practical, especially for people who are blind or low-vision. In this study, we investigate ways to improve error detection by manipulating the audio output of the transcribed text based on the recognizer's confidence level in its result. Our findings show that selectively slowing down the audio when the recognizer exhibited uncertainty led to a 12% relative increase in participants' ability to detect errors compared to uniformly slowing the audio. It also reduced the time it took participants to listen to the recognition result and decide if there was an error by 11%.  more » « less
Award ID(s):
1909248
PAR ID:
10628760
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400714023
Page Range / eLocation ID:
194 to 201
Format(s):
Medium: X
Location:
Corfu Island Greece
Sponsoring Org:
National Science Foundation
More Like this
  1. The robustness and vulnerability of Deep Neural Networks (DNN) are quickly becoming a critical area of interest since these models are in widespread use across real-world applications (i.e., image and audio analysis, recommendation system, natural language analysis, etc.). A DNN's vulnerability is exploited by an adversary to generate data to attack the model; however, the majority of adversarial data generators have focused on image domains with far fewer work on audio domains. More recently, audio analysis models were shown to be vulnerable to adversarial audio examples (e.g., speech command classification, automatic speech recognition, etc.). Thus, one urgent open problem is to detect adversarial audio reliably. In this contribution, we incorporate a separate and yet related DNN technique to detect adversarial audio, namely model quantization. Then we propose an algorithm to detect adversarial audio by using a DNN's quantization error. Specifically, we demonstrate that adversarial audio typically exhibits a larger activation quantization error than benign audio. The quantization error is measured using character error rates. We use the difference in errors to discriminate adversarial audio. Experiments with three the-state-of-the-art audio attack algorithms against the DeepSpeech model show our detection algorithm achieved high accuracy on the Mozilla dataset. 
    more » « less
  2. Mitrovic, Antonija; Bosch, Nigel (Ed.)
    Classroom environments are challenging for artificially intelligent agents primarily because classroom noise dilutes the interpretability and usefulness of gathered data. This problem is exacerbated when groups of students participate in collaborative problem solving (CPS). Here, we examine how well six popular microphones capture audio from individual groups. A primary usage of audio data is automatic speech recognition (ASR), therefore we evaluate our recordings by examining the accuracy of downstream ASR using the Google Cloud Platform. We simultaneously captured the audio of all microphones for 11 unique groups of three participants first reading a prepared script, and then participating in a collaborative problem solving exercise. We vary participants, noise conditions, and speech contexts. Transcribed speech was evaluated using word error rate (WER). We find that scripted speech is transcribed with a surprisingly high degree of accuracy across groups (average WER = 0.114, SD = 0.044). However, the CPS task was much more difficult (average WER = 0.570, SD = 0.143). We found most microphones were robust to background noise below a certain threshold, but the AT-Cardioid and ProCon microphones were more robust to higher noise levels. Finally, an analysis of errors revealed that most errors were due to the ASR missing words/phrases, rather than mistranscribing them. We conclude with recommendations based on our observations. 
    more » « less
  3. Intelligent systems to support collaborative learning rely on real-time behavioral data, including language, audio, and video. However, noisy data, such as word errors in speech recognition, audio static or background noise, and facial mistracking in video, often limit the utility of multimodal data. It is an open question of how we can build reliable multimodal models in the face of substantial data noise. In this paper, we investigate the impact of data noise on the recognition of confusion and conflict moments during collaborative programming sessions by 25 dyads of elementary school learners. We measure language errors with word error rate (WER), audio noise with speech-to-noise ratio (SNR), and video errors with frame-by-frame facial tracking accuracy. The results showed that the model’s accuracy for detecting confusion and conflict in the language modality decreased drastically from 0.84 to 0.73 when the WER exceeded 20%. Similarly, in the audio modality, the model’s accuracy decreased sharply from 0.79 to 0.61 when the SNR dropped below 5 dB. Conversely, the model’s accuracy remained relatively constant in the video modality at a comparable level (> 0.70) so long as at least one learner’s face was successfully tracked. Moreover, we trained several multimodal models and found that integrating multimodal data could effectively offset the negative effect of noise in unimodal data, ultimately leading to improved accuracy in recognizing confusion and conflict. These findings have practical implications for the future deployment of intelligent systems that support collaborative learning in actual classroom settings. 
    more » « less
  4. Audio-based human activity recognition (HAR) is very popular because many human activities have unique sound signatures that can be detected using machine learning (ML) approaches. These audio-based ML HAR pipelines often use common featurization techniques, such as extracting various statistical and spectral features by converting time domain signals to the frequency domain (using an FFT) and using them to train ML models. Some of these approaches also claim privacy benefits by preventing the identification of human speech. However, recent deep learning-based automatic speech recognition (ASR) models pose new privacy challenges to these featurization techniques. In this paper, we systematically evaluate various featurization approaches for audio data, assessing their privacy risks through metrics like speech intelligibility (PER and WER) while considering the utility tradeoff in terms of ML-based activity recognition accuracy. Our findings reveal the susceptibility of these approaches to speech content recovery when exposed to recent ASR models, especially under re-tuning or retraining conditions. Notably, fine-tuned ASR models achieved an average Phoneme Error Rate (PER) of 39.99% and Word Error Rate (WER) of 44.43% in speech recognition for these approaches. To overcome these privacy concerns, we propose Kirigami, a lightweight machine learning-based audio speech filter that removes human speech segments reducing the efficacy of ASR models (70.48% PER and 101.40% WER) while also maintaining HAR accuracy (76.0% accuracy). We show that Kirigami can be implemented on common edge microcontrollers with limited computational capabilities and memory, providing a path to deployment on a variety of IoT devices. Finally, we conducted a real-world user study and showed the robustness of Kirigami on a laptop and an ARM Cortex-M4F microcontroller under three different background noises. 
    more » « less
  5. The proliferation of the Internet of Things has increased reliance on voice-controlled devices to perform everyday tasks. Although these devices rely on accurate speech recognition for correct functionality, many users experience frequent misinterpretations in normal use. In this work, we conduct an empirical analysis of interpretation errors made by Amazon Alexa, the speech-recognition engine that powers the Amazon Echo family of devices. We leverage a dataset of 11,460 speech samples containing English words spoken by American speakers and identify where Alexa misinterprets the audio inputs, how often, and why. We find that certain misinterpretations appear consistently in repeated trials and are systematic. Next, we present and validate a new attack, called skill squatting. In skill squatting, an attacker leverages systematic errors to route a user to malicious application without their knowledge. In a variant of the attack we call spear skill squatting, we further demonstrate that this attack can be targeted at specific demographic groups. We conclude with a discussion of the security implications of speech interpretation errors, countermeasures, and future work. 
    more » « less