skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A CASE STUDY: INTELLIGENT SHADING RETROFIT TO EXISTING HOME-OFFICE USING MULTI-OBJECTIVE OPTIMIZATION
ABSTRACT Improved energy performance and occupant comfort are driving building design decisions due to the increasing demand for sustainable and green buildings. However, despite the variety of technological developments in other fields, the range of solutions to improve building performance is limited. One of the main limitations for an early designer is a performance evaluation method to facilitate the design process. This paper offers a new shading performance optimization process that can help designers evaluate both daylighting and energy performance and generate optimized and flexible designs that can be further improved by implementing user-specific automation. The proposed performance optimization method utilizes parametric design, building simulation models, and Genetic Algorithms. Common shading design systems are explored through parametric design, and daylighting and energy modeling simulations are performed to evaluate shading device performance. Genetic Algorithms are used to identify design options with optimal energy and daylighting performance. A case study is conducted to verify the effectiveness of the overall process. Results are used to analyze the influence of design decisions among different shading designs. Finally, future directions in both shading design and energy optimization are presented.  more » « less
Award ID(s):
2035176 2039089
PAR ID:
10629053
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Meridian Allen Press
Date Published:
Journal Name:
Journal of Green Building
Volume:
19
Issue:
1
ISSN:
1552-6100
Page Range / eLocation ID:
123 to 156
Subject(s) / Keyword(s):
multi-objective optimization optimization parametric design Roller Blinds shading design smart building Venetian blinds
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Building facades are components that shape a structure’s daylighting, energy use, and view factors. This paper presents an approach that enables designers to understand the impact that different facade designs will have over time and space in the built environment through a BIM-enabled augmented reality system. The system permits the examination of a range of facade retrofit scenarios and visualizes the daylighting simulations and aesthetics of a structure while retaining function and comfort. A focus of our study was to measure how participants make decisions within the multiobjective decision space designers often face when buildings undergo retrofitting. This process often requires designers to search for a set of alternatives that represent the optimal solution. We analyze the decision-making process of forty-four subjects to determine how they explore design choices. Our results indicate the feasibility of using BIM-enabled AR to improve how designers make informed decisions. 
    more » « less
  2. The research investigates the design and development of a serious game to teach green building design and energy literacy in rural middle schools in the United States. The paper presents a pilot study, education mini-game development integrated with parametric BIM and energy simulations. The game scenario was built on the developed science curriculum modules in our funded research, teaching building energy technologies such as daylighting, artificial lighting, window configurations, building materials, solar panels, etc. The mini-game, Illumi’s World, presents a baseline science lab and a media library of typical public schools in the United States. The players have the opportunity to improve energy literacy in several ways: manipulating the building configurations and the energy options, reviewing energy costs and emission level changes, and monitoring the performance from the game dashboards. This paper presents background theory, curriculum design, the mini-game development framework, methods and tools for energy simulation and BIM visualization, and the findings and challenges. 
    more » « less
  3. Engaging with performance feedback in early building design often involves building a custom parametric model and generating large datasets, which is not always feasible. Alternatively, large parametric datasets of general design problems and filtering methods could be used together to explore specific design decisions. This paper investigates the generalizability of a method that dynamically assesses variable importance and likely influence on performance objectives as a precomputed design space is filtered down. The method first trains linear model trees to predict building performance objectives across a generic design space. Leaf node models are then aggregated to provide feedback on variable importance in different design space regions. This approach is tested on three design problems that vary in number of variables, samples, and design space structure to reveal advantages and potential limitations of the method. Algorithm improvements are proposed, and general recommendations are developed to apply it on future datasets. 
    more » « less
  4. Computational tools have been used in structural engineering design for numerous objectives, typically focusing on optimizing a design process. We first provide a detailed literature review for optimizing truss structures with metaheuristic algorithms. Then, we evaluate an effective solution for designing truss structures used in structural engineering through a method called the mountain gazelle optimizer, which is a nature-inspired meta-heuristic algorithm derived from the social behavior of wild mountain gazelles. We use benchmark problems for truss optimization and a penalty method for handling constraints. The performance of the proposed optimization algorithm will be evaluated by solving complex and challenging problems, which are common in structural engineering design. The problems include a high number of locally optimal solutions and a non-convex search space function, as these are considered suitable to evaluate the capabilities of optimization algorithms. This work is the first of its kind, as it examines the performance of the mountain gazelle optimizer applied to the structural engineering design field while assessing its ability to handle such design problems effectively. The results are compared to other optimization algorithms, showing that the mountain gazelle optimizer can provide optimal and efficient design solutions with the lowest possible weight. 
    more » « less
  5. Parametric optimization techniques allow building designers to pursue multiple performance objectives, which can benefit the overall design. However, the strategies used by architecture and engineering graduate students when working with optimization tools are unclear, and ineffective computational design procedures may limit their success as future designers. In response, this re-search identifies several designerly behaviors of graduate students when responding to a conceptual building design optimization task. It uses eye-tracking, screen recording, and empirical methods to code their behaviors following the situated FBS framework. From these data streams, three different types of design iterations emerge: one by the designer alone, one by the optimizer alone, and one by the designer incorporating feedback from the optimizer. Based on the timing and frequency of these loops, student participants were characterized as completing partial, crude, or complete optimization cycles while developing their designs. This organization of optimization techniques establishes reoccurring strategies employed by developing designers, which can encourage future pedagogical approaches that empower students to incorporate complete optimization cycles while improving their designs. It can also be used in future research studies to establish clear links between types of design optimization behavior and design quality. 
    more » « less