A recently reported vision ray metrology technique [Opt. Express29,43480(2021)OPEXFF1094-408710.1364/OE.443550] measures geometric wavefronts with high precision. This paper introduces a method to convert these wavefront data into height information, focusing on the impact of back surface flatness and telecentricity errors on measurement accuracy. Systematic errors from these factors significantly affect height measurements. Using ray trace simulations, we estimate reconstruction errors with various plano-concave and plano-convex elements. We also developed a calibration technique to mitigate telecentricity errors, achieving submicron accuracy in surface reconstruction. This study provides practical insights into vision ray metrology systems, highlighting validity limits, emphasizing the importance of calibration for larger samples, and establishing system alignment tolerances. The reported technique for the conversion of geometric wavefronts to surface topography employs a direct non-iterative ray-tracing-free method. It is ideally suited for reference-free metrology with application to freeform optics manufacturing.
more »
« less
This content will become publicly available on June 1, 2026
A novel method for through-silicon via characterization based on diffraction fringe analysis
The precision metrology of through-hole silicon via (TSV) in the semiconductor industry has remained a critical challenge as its critical dimension (CD) reduces. In this letter, we report a novel method for TSV geometric feature measurement and characterization. By illuminating a collimated infrared laser beam to the TSV and then analyzing the TSV edge-induced diffraction interferometric fringe patterns, multiple geometric information of the TSV could be characterized, establishing its database. This computational approach to TSV characterization was validated by experiments. Being non-destructive and easy to deploy, this method provides a low cost and high efficiency solution for TSV metrology.
more »
« less
- Award ID(s):
- 2426512
- PAR ID:
- 10630562
- Publisher / Repository:
- Ultramicroscopy
- Date Published:
- Journal Name:
- Ultramicroscopy
- Volume:
- 272
- Issue:
- C
- ISSN:
- 0304-3991
- Page Range / eLocation ID:
- 114136
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents the line-edge-roughness (LER) characterization of the photomask patterns and the lithography-printed patterns by enhanced knife edge interferometry (EKEI) that measures the interferometric fringe patterns occurring when the light is incident on the patterned edge. The LER is defined as a geometric deviation of a feature edge from an ideal sharp edge. The Fresnel number-based computational model was developed to simulate the fringe patterns according to the LER conditions. Based on the computational model, the photomask patterns containing LER features were designed and fabricated. Also, the patterns were printed on the glass wafer by photolithography. The interferometric fringe patterns of those two groups of patterns were measured and compared with the simulation results. By using the cross-correlation method, the LER effects on the fringe patterns were characterized. The simulation and experimental results showed good agreement. It showed that the amplitude of the fringe pattern decreases as the LER increases in both cases: photomask patterns and printed wafer patterns. As a result, the EKEI and its analysis methods showed the potential to be used in photomask design and pattern metrology, and inspection for advancing semiconductor manufacturing processes.more » « less
-
Vision ray techniques are known in the optical community to provide low-uncertainty image formation models. In this work, we extend this approach and propose a vision ray metrology system that estimates the geometric wavefront of a measurement sample using the sample-induced deflection in the vision rays. We show the feasibility of this approach using simulations and measurements of spherical and freeform optics. In contrast to the competitive technique deflectometry, this approach relies on differential measurements and, hence, requires no elaborated calibration procedure that uses sophisticated optimization algorithms to estimate geometric constraints. Applications of this work are the metrology and alignment of freeform optics.more » « less
-
This paper introduces a new digital integration that combines edge diffractometry with convolutional neural networks (CNN) for via metrology and inspection. The beam propagation method (BMP) was used to simulate the interferogram generated by edge diffractometry to characterize via edge roughness (VER). A comprehensive database was established to link different fringe patterns to VER for CNN training. The well-trained CNN-based methodology provided a fast and accurate assessment of VER, with a root mean squared error (RMSE) of 0.073 and an average mean absolute deviation ratio (MADR) of 2.274%. In addition, the proposed digital approach was compared to the multilayer perceptron machine (MLP) in terms of computational efficiency and predictive accuracy. The proposed digital integration greatly improved the accuracy and speed of VER measurement, characterization, and quantification, potentially enhancing device yield and reliability. The successful application of this digital approach could open up possibilities for various types of via or pattern metrology.more » « less
-
North-Morris, Michael B.; Creath, Katherine; Porras-Aguilar, Rosario (Ed.)A novel Vision ray metrology technique is reported that estimates the geometric wavefront of a measurement sample using the sample-induced deflection in the vision rays. Vision ray techniques are known in the vision community to provide image formation models even when conventional camera calibration techniques fail. This work extends the use of vision rays to the area of optical metrology. In contrast to phase measuring deflectometry, this work relies on differential measurements, and hence, the absolute position and orientation between target and camera do not need to be known. This optical configuration significantly reduces the complexity of the reconstruction algorithms. The proposed vision ray metrology system does not require mathematical optimization algorithms for calibration and reconstruction – the vision rays are obtained using a simple 3D fitting of a line.more » « less
An official website of the United States government
