skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: G.3.2 is a novel allele of the gene connector enhancer of ksr (cnk) in Drosophila melanogaster
Genetic screens in Drosophila melanogaster have long been used to identify genes found in a variety of developmental, cellular, and behavioral processes. Here we describe the characterization and mapping of a mutation identified in a conditional screen for genetic regulators of cell growth and cell division. Within a Flp/FRT system, mutant G.3.2 results in a reduction of mutant tissue and a rough eye phenotype. We find that G.3.2 maps to the gene cnk, providing further support that cnk is a critical gene in Drosophila eye development. This mutant was characterized, mapped and sequenced by undergraduate students within the Fly-CURE consortium.  more » « less
Award ID(s):
2316218
PAR ID:
10630847
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
microPublication Biology
Date Published:
Journal Name:
microPublication biology
Volume:
2024
ISSN:
2578-9430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In Drosophila melanogaster genetic screens are often used to identify genes associated with different biological processes. Here, we have utilized the Flp/FRT system to generate mitotic clones within the developing eye. These clones were screened for mutations that disrupt cell division, organ patterning, and cell growth. One such mutation from this screen, mutant M.3.2, resulted in an expansion of the cuticle within the area normally covered by ommatidium as well as an overall smaller eye size. Genetic and molecular mapping revealed this mutation to be in the gene, tout-velu (ttv). 
    more » « less
  2. Genetic screens are valuable for identifying novel genes involved in the regulation of developmental processes. To identify genes associated with cell growth regulation in Drosophila melanogaster, a mutagenesis screen was performed. Undergraduate students participating in Fly-CURE phenotypically characterized the E.4.1 mutant which is associated with rough eyes and antennae overgrowth. Following complementation analysis and subsequent genomic sequencing, E.4.1 was identified as a novel mutant allele of GstE14, a gene involved in ecdysone biosynthesis important for the timing of developmental events. The abnormal eye and antenna phenotypes observed resulting from the loss of GstE14 suggest its role in tissue growth. 
    more » « less
  3. null (Ed.)
    Genetic screens are used to identify genes involved in specific biological processes. An EMS mutagenesis screen in Drosophila melanogaster identified growth control phenotypes in the developing eye. One mutant line from this screen, H.3.2, was phenotypically characterized using the FLP/FRT system and genetically mapped by complementation analysis and genomic sequencing by undergraduate students participating in the multi-institution Fly-CURE consortium. H.3.2 was found to have a nonsense mutation in short stop (shot), an ortholog of the mammalian spectraplakin dystonin (DST). shot and DST are involved in cytoskeletal organization and play roles during cell growth and proliferation. 
    more » « less
  4. The mutation I.3.2 was previously identified in a FLP/FRT screen of chromosome 2R for conditional growth regulators. Here we report the phenotypic characterization and genetic mapping of I.3.2 by undergraduate students participating in Fly-CURE, a pedagogical program that teaches the science of genetics through a classroom research experience. We find that creation of I.3.2 cell clones in the developing eye-antennal imaginal disc causes a headless adult phenotype, suggestive of both autonomous and non-autonomous effects on cell growth or viability. We also identify the I.3.2 mutation as a loss-of-function allele of the gene centromere identifier (cid), which encodes centromere-specific histone H3 variant critical for chromosomal segregation. 
    more » « less
  5. The mutation I.3.2 was previously identified in a FLP/FRT screen of chromosome 2R for conditional growth regulators. Here we report the phenotypic characterization and genetic mapping of I.3.2 by undergraduate students participating in Fly-CURE, a pedagogical program that teaches the science of genetics through a classroom research experience. We find that creation of I.3.2 cell clones in the developing eye-antennal imaginal disc causes a headless adult phenotype, suggestive of both autonomous and non-autonomous effects on cell growth or viability. We also identify the I.3.2 mutation as a loss-of-function allele of the gene centromere identifier (cid), which encodes centromere-specific histone H3 variant critical for chromosomal segregation. 
    more » « less