skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 4, 2026

Title: Effect of Deviations from General Relativity on Searches for Gravitational-wave Microlensing and Type II Strong Lensing
Abstract As the gravitational-wave (GW) detector network is upgraded and the sensitivity of the detectors improves, novel scientific avenues open for exploration. For example, tests of general relativity (GR) will become more accurate as smaller deviations can be probed. Additionally, the detection of lensed GWs becomes more likely. However, these new avenues could also interact with each other, and a GW event presenting deviations from GR could be mistaken for a lensed one. Here, we explore how phenomenological deviations from GR or binaries of exotic compact objects could impact those lensing searches focusing on a single event. We consider strong lensing, millilensing, and microlensing, and find that certain phenomenological deviations from GR may be mistaken for all of these types of lensing. Therefore, our study shows that future candidate lensing events would need to be carefully examined to avoid a false claim of lensing where instead a deviation from GR has been seen.  more » « less
Award ID(s):
2205920
PAR ID:
10631298
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
981
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Along their path from source to observer, gravitational waves may be gravitationally lensed by massive objects leading to distortion in the signals. Searches for these distortions amongst the observed signals from the current detector network have already been carried out, though there have as yet been no confident detections. However, predictions of the observation rate of lensing suggest detection in the future is a realistic possibility. Therefore, preparations need to be made to thoroughly investigate the candidate lensed signals. In this work, we present some follow-up analyses that could be applied to assess the significance of such events and ascertain what information may be extracted about the lens-source system by applying these analyses to a number of O3 candidate events, even if these signals did not yield a high significance for any of the lensing hypotheses. These analyses cover the strong lensing, millilensing, and microlensing regimes. Applying these additional analyses does not lead to any additional evidence for lensing in the candidates that have been examined. However, it does provide important insight into potential avenues to deal with high-significance candidates in future observations. 
    more » « less
  2. NA (Ed.)
    General relativity (GR) has proven to be a highly successful theory of gravity since its inception. The theory has thrivingly passed numerous experimental tests, predominantly in weak gravity, low relative speeds, and linear regimes, but also in the strong-field and very low-speed regimes with binary pulsars. Observable gravitational waves (GWs) originate from regions of spacetime where gravity is extremely strong, making them a unique tool for testing GR, in previously inaccessible regions of large curvature, relativistic speeds, and strong gravity. Since their first detection, GWs have been extensively used to test GR, but no deviations have been found so far. Given GR’s tremendous success in explaining current astronomical observations and laboratory experiments, accepting any deviation from it requires a very high level of statistical confidence and consistency of the deviation across GW sources. In this paper, we compile a comprehensive list of potential causes that can lead to a false identification of a GR violation in standard tests of GR on data from current and future ground-based GW detectors. These causes include detector noise, signal overlaps, gaps in the data, detector calibration, source model inaccuracy, missing physics in the source and in the underlying environment model, source misidentification, and mismodeling of the astrophysical population. We also provide a rough estimate of when each of these causes will become important for tests of GR for different detector sensitivities. We argue that each of these causes should be thoroughly investigated, quantified, and ruled out before claiming a GR violation in GW observations. 
    more » « less
  3. Abstract Gravitational lensing by massive objects along the line of sight to the source causes distortions to gravitational wave (GW) signals; such distortions may reveal information about fundamental physics, cosmology, and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO-Virgo network. We search for repeated signals from strong lensing by (1) performing targeted searches for subthreshold signals, (2) calculating the degree of overlap among the intrinsic parameters and sky location of pairs of signals, (3) comparing the similarities of the spectrograms among pairs of signals, and (4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by (1) frequency-independent phase shifts in strongly lensed images, and (2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the nondetection of GW lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects. 
    more » « less
  4. Abstract Supermassive black hole binary systems (SMBHBs) should be the most powerful sources of gravitational waves (GWs) in the universe. Once pulsar timing arrays (PTAs) detect the stochastic GW background from their cosmic merger history, searching for individually resolvable binaries will take on new importance. Since these individual SMBHBs are expected to be rare, here we explore how strong gravitational lensing can act as a tool for increasing their detection prospects by magnifying fainter sources and bringing them into view. Unlike for electromagnetic waves, when the geometric optics limit is nearly always valid, for GWs the wave-diffraction-interference effects can become important when the wavelength of the GWs is larger than the Schwarzchild radius of the lens, i.e., M lens 10 8 f mHz 1 M . For the GW frequency range explored in this work, the geometric optics limit holds. We investigate GW signals from SMBHBs that might be detectable with current and future PTAs under the assumption that quasars serve as bright beacons that signal a recent merger. Using the black hole mass function derived from quasars and a physically motivated magnification distribution, we expect to detect a few strongly lensed binary systems out toz≈ 2. Additionally, for a range of fixed magnifications 2 ≤μ≤ 100, strong lensing adds up to ∼30 more detectable binaries for PTAs. Finally, we investigate the possibility of observing both time-delayed electromagnetic signals and GW signals from these strongly lensed binary systems—that will provide us with unprecedented multi-messenger insights into their orbital evolution. 
    more » « less
  5. Abstract The study of light lensed by cosmic matter has yielded much information about astrophysical questions. Observations are explained using geometrical optics following a ray-based description of light. After deflection the lensed light interferes, but observing this diffractive aspect of gravitational lensing has not been possible due to coherency challenges caused by the finite size of the sources or lack of near-perfect alignment. In this article, we report on the observation of these wave effects of gravitational lensing by recreating the lensing conditions in the laboratory via electro-optic deflection of coherent laser light. The lensed light produces a beam containing regularities, caustics, and chromatic modulations of intensity that depend on the symmetry and structure of the lensing object. We were also able to observe previous and new geometric-optical lensing situations that can be compared to astrophysical observations. This platform could be a useful tool for testing numerical/analytical simulations, and for performing analog simulations of lensing situations when they are difficult to obtain otherwise. We found that laboratory lensed beams constitute a new class of beams, with long-range, low expansion, and self-healing properties, opening new possibilities for non-astrophysical applications. 
    more » « less