skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization
In this paper, we focus on simple bilevel optimization problems, where we minimize a convex smooth objective function over the optimal solution set of another convex smooth constrained optimization problem. We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem using a cutting plane approach and employs an accelerated gradient-based update to reduce the upper-level objective function over the approximated solution set. We measure the performance of our method in terms of suboptimality and infeasibility errors and provide non-asymptotic convergence guarantees for both error criteria. Specifically, when the feasible set is compact, we show that our method requires at most (max{1/ϵf‾‾√,1/ϵg}) iterations to find a solution that is ϵf-suboptimal and ϵg-infeasible. Moreover, under the additional assumption that the lower-level objective satisfies the r-th Hölderian error bound, we show that our method achieves an iteration complexity of (max{ϵ−2r−12rf,ϵ−2r−12rg}), which matches the optimal complexity of single-level convex constrained optimization when r=1.  more » « less
Award ID(s):
2505865
PAR ID:
10631864
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
https://doi.org/10.48550/arXiv.2402.08097
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ruiz, Francisco; Dy, Jennifer; van de Meent, Jan-Willem (Ed.)
    In this paper, we study a class of bilevel optimization problems, also known as simple bilevel optimization, where we minimize a smooth objective function over the optimal solution set of another convex constrained optimization problem. Several iterative methods have been developed for tackling this class of problems. Alas, their convergence guarantees are either asymptotic for the upper-level objective, or the convergence rates are slow and sub-optimal. To address this issue, in this paper, we introduce a novel bilevel optimization method that locally approximates the solution set of the lower-level problem via a cutting plane and then runs a conditional gradient update to decrease the upper-level objective. When the upper-level objective is convex, we show that our method requires $${O}(\max\{1/\epsilon_f,1/\epsilon_g\})$$ iterations to find a solution that is $$\epsilon_f$$-optimal for the upper-level objective and $$\epsilon_g$$-optimal for the lower-level objective. Moreover, when the upper-level objective is non-convex, our method requires $${O}(\max\{1/\epsilon_f^2,1/(\epsilon_f\epsilon_g)\})$$ iterations to find an $$(\epsilon_f,\epsilon_g)$$-optimal solution. We also prove stronger convergence guarantees under the Holderian error bound assumption on the lower-level problem. To the best of our knowledge, our method achieves the best-known iteration complexity for the considered class of bilevel problems. 
    more » « less
  2. This work proposes a new algorithm – the Single-timescale Double-momentum Stochastic Approximation (SUSTAIN) –for tackling stochastic unconstrained bilevel optimization problems. We focus on bilevel problems where the lower level subproblem is strongly-convex and the upper level objective function is smooth. Unlike prior works which rely on two-timescale or double loop techniques, we design a stochastic momentum-assisted gradient estimator for both the upper and lower level updates. The latter allows us to control the error in the stochastic gradient updates due to inaccurate solution to both subproblems. If the upper objective function is smooth but possibly non-convex, we show that SUSTAIN requires $${O}(\epsilon^{-3/2})$$ iterations (each using $O(1)$ samples) to find an $$\epsilon$$-stationary solution. The $$\epsilon$$-stationary solution is defined as the point whose squared norm of the gradient of the outer function is less than or equal to $$\epsilon$$. The total number of stochastic gradient samples required for the upper and lower level objective functions match the best-known complexity for single-level stochastic gradient algorithms. We also analyze the case when the upper level objective function is strongly-convex. 
    more » « less
  3. In this paper, we revisit the bilevel optimization problem, in which the upper-level objective function is generally nonconvex and the lower-level objective function is strongly convex. Although this type of problem has been studied extensively, it still remains an open question how to achieve an $$\mathcal{O}(\epsilon^{-1.5})$$ sample complexity in Hessian/Jacobian-free stochastic bilevel optimization without any second-order derivative computation. To fill this gap, we propose a novel Hessian/Jacobian-free bilevel optimizer named FdeHBO, which features a simple fully single-loop structure, a projection-aided finite-difference Hessian/Jacobian-vector approximation, and momentum-based updates. Theoretically, we show that FdeHBO requires $$\mathcal{O}(\epsilon^{-1.5})$$ iterations (each using $$\mathcal{O}(1)$$ samples and only first-order gradient information) to find an $$\epsilon$$-accurate stationary point. As far as we know, this is the first Hessian/Jacobian-free method with an $$\mathcal{O}(\epsilon^{-1.5})$$ sample complexity for nonconvex-strongly-convex stochastic bilevel optimization. 
    more » « less
  4. Abstract We present a new feasible proximal gradient method for constrained optimization where both the objective and constraint functions are given by summation of a smooth, possibly nonconvex function and a convex simple function. The algorithm converts the original problem into a sequence of convex subproblems. Formulating those subproblems requires the evaluation of at most one gradient-value of the original objective and constraint functions. Either exact or approximate subproblems solutions can be computed efficiently in many cases. An important feature of the algorithm is the constraint level parameter. By carefully increasing this level for each subproblem, we provide a simple solution to overcome the challenge of bounding the Lagrangian multipliers and show that the algorithm follows a strictly feasible solution path till convergence to the stationary point. We develop a simple, proximal gradient descent type analysis, showing that the complexity bound of this new algorithm is comparable to gradient descent for the unconstrained setting which is new in the literature. Exploiting this new design and analysis technique, we extend our algorithms to some more challenging constrained optimization problems where (1) the objective is a stochastic or finite-sum function, and (2) structured nonsmooth functions replace smooth components of both objective and constraint functions. Complexity results for these problems also seem to be new in the literature. Finally, our method can also be applied to convex function constrained problems where we show complexities similar to the proximal gradient method. 
    more » « less
  5. In a chance constrained program (CCP), decision makers seek the best decision whose probability of violating the uncertainty constraints is within the prespecified risk level. As a CCP is often nonconvex and is difficult to solve to optimality, much effort has been devoted to developing convex inner approximations for a CCP, among which the conditional value-at-risk (CVaR) has been known to be the best for more than a decade. This paper studies and generalizes the ALSO-X, originally proposed by Ahmed, Luedtke, SOng, and Xie in 2017 , for solving a CCP. We first show that the ALSO-X resembles a bilevel optimization, where the upper-level problem is to find the best objective function value and enforce the feasibility of a CCP for a given decision from the lower-level problem, and the lower-level problem is to minimize the expectation of constraint violations subject to the upper bound of the objective function value provided by the upper-level problem. This interpretation motivates us to prove that when uncertain constraints are convex in the decision variables, ALSO-X always outperforms the CVaR approximation. We further show (i) sufficient conditions under which ALSO-X can recover an optimal solution to a CCP; (ii) an equivalent bilinear programming formulation of a CCP, inspiring us to enhance ALSO-X with a convergent alternating minimization method (ALSO-X+); and (iii) an extension of ALSO-X and ALSO-X+ to distributionally robust chance constrained programs (DRCCPs) under the ∞−Wasserstein ambiguity set. Our numerical study demonstrates the effectiveness of the proposed methods. 
    more » « less