skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 22, 2026

Title: Property Inheritance for Subtensors in Tensor Train Decompositions
Tensor dimensionality reduction is one of the fundamental tools for modern data science. To address the high computational overhead, fiber-wise sampled subtensors that preserve the original tensor rank are often used in designing efficient and scalable tensor dimensionality reduction. However, the theory of property inheritance for subtensors is still underdevelopment, that is, how the essential properties of the original tensor will be passed to its subtensors. This paper theoretically studies the property inheritance of the two key tensor properties, namely incoherence and condition number, under the tensor train setting. We also show how tensor train rank is preserved through fiber-wise sampling. The key parameters introduced in theorems are numerically evaluated under various settings. The results show that the properties of interest can be well preserved to the subtensors formed via fiber-wise sampling. Overall, this paper provides several handy analytic tools for developing efficient tensor analysis methods.  more » « less
Award ID(s):
2304489
PAR ID:
10632637
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE International Symposium on Information Theory
Date Published:
Format(s):
Medium: X
Location:
Ann Arbor, Michigan
Sponsoring Org:
National Science Foundation
More Like this
  1. Tensor train decomposition is widely used in machine learning and quantum physics due to its concise representation of high-dimensional tensors, overcoming the curse of dimensionality. Cross approximation-originally developed for representing a matrix from a set of selected rows and columns-is an efficient method for constructing a tensor train decomposition of a tensor from few of its entries. While tensor train cross approximation has achieved remarkable performance in practical applications, its theoretical analysis, in particular regarding the error of the approximation, is so far lacking. To our knowledge, existing results only provide element-wise approximation accuracy guarantees, which lead to a very loose bound when extended to the entire tensor. In this paper, we bridge this gap by providing accuracy guarantees in terms of the entire tensor for both exact and noisy measurements. Our results illustrate how the choice of selected subtensors affects the quality of the cross approximation and that the approximation error caused by model error and/or measurement error may not grow exponentially with the order of the tensor. These results are verified by numerical experiments, and may have important implications for the usefulness of cross approximations for high-order tensors, such as those encountered in the description of quantum many-body states. 
    more » « less
  2. A major challenge in many machine learning tasks is that the model expressive power depends on model size. Low-rank tensor methods are an efficient tool for handling the curse of dimensionality in many large-scale machine learning models. The major challenges in training a tensor learning model include how to process the high-volume data, how to determine the tensor rank automatically, and how to estimate the uncertainty of the results. While existing tensor learning focuses on a specific task, this paper proposes a generic Bayesian framework that can be employed to solve a broad class of tensor learning problems such as tensor completion, tensor regression, and tensorized neural networks. We develop a low-rank tensor prior for automatic rank determination in nonlinear problems. Our method is implemented with both stochastic gradient Hamiltonian Monte Carlo (SGHMC) and Stein Variational Gradient Descent (SVGD). We compare the automatic rank determination and uncertainty quantification of these two solvers. We demonstrate that our proposed method can determine the tensor rank automatically and can quantify the uncertainty of the obtained results. We validate our framework on tensor completion tasks and tensorized neural network training tasks. 
    more » « less
  3. With the advent of machine learning and its overarching pervasiveness it is imperative to devise ways to represent large datasets efficiently while distilling intrinsic features necessary for subsequent analysis. The primary workhorse used in data dimensionality reduction and feature extraction has been the matrix singular value decomposition (SVD), which presupposes that data have been arranged in matrix format. A primary goal in this study is to show that high-dimensional datasets are more compressible when treated as tensors (i.e., multiway arrays) and compressed via tensor-SVDs under the tensor-tensor product constructs and its generalizations. We begin by proving Eckart–Young optimality results for families of tensor-SVDs under two different truncation strategies. Since such optimality properties can be proven in both matrix and tensor-based algebras, a fundamental question arises: Does the tensor construct subsume the matrix construct in terms of representation efficiency? The answer is positive, as proven by showing that a tensor-tensor representation of an equal dimensional spanning space can be superior to its matrix counterpart. We then use these optimality results to investigate how the compressed representation provided by the truncated tensor SVD is related both theoretically and empirically to its two closest tensor-based analogs, the truncated high-order SVD and the truncated tensor-train SVD. 
    more » « less
  4. null (Ed.)
    Canonical polyadic decomposition (CPD) has been a workhorse for multimodal data analytics. This work puts forth a stochastic algorithmic framework for CPD under β-divergence, which is well-motivated in statistical learning—where the Euclidean distance is typically not preferred. Despite the existence of a series of prior works addressing this topic, pressing computational and theoretical challenges, e.g., scalability and convergence issues, still remain. In this paper, a unified stochastic mirror descent framework is developed for large-scale β-divergence CPD. Our key contribution is the integrated design of a tensor fiber sampling strategy and a flexible stochastic Bregman divergence-based mirror descent iterative procedure, which significantly reduces the computation and memory cost per iteration for various β. Leveraging the fiber sampling scheme and the multilinear algebraic structure of low-rank tensors, the proposed lightweight algorithm also ensures global convergence to a stationary point under mild conditions. Numerical results on synthetic and real data show that our framework attains significant computational saving compared with state-of-the-art methods. 
    more » « less
  5. null (Ed.)
    Fabrication process variations can significantly influence the performance and yield of nano-scale electronic and photonic circuits. Stochastic spectral methods have achieved great success in quantifying the impact of process variations, but they suffer from the curse of dimensionality. Recently, low-rank tensor methods have been developed to mitigate this issue, but two fundamental challenges remain open: how to automatically determine the tensor rank and how to adaptively pick the informative simulation samples. This paper proposes a novel tensor regression method to address these two challenges. We use a ℓq/ℓ2 group-sparsity regularization to determine the tensor rank. The resulting optimization problem can be efficiently solved via an alternating minimization solver. We also propose a two-stage adaptive sampling method to reduce the simulation cost. Our method considers both exploration and exploitation via the estimated Voronoi cell volume and nonlinearity measurement respectively. The proposed model is verified with synthetic and some realistic circuit benchmarks, on which our method can well capture the uncertainty caused by 19 to 100 random variables with only 100 to 600 simulation samples. 
    more » « less