This paper describes the study of a topology of modular multilevel converters for integrating battery energy storage into a medium (13.8 kV) distribution system. The main benefit of this topology is to remove the need for a bulk 60 Hz transformer that is normally used to step up the output of a voltage source inverter to the medium voltage level. A SiC-based power electronics interface presented in this paper provides an efficient solution without the large and costly transformer. Using medium voltage SiC devices (≥ 10 kV SiC MOSFETs), with their high breakdown voltage, enables the system to meet and withstand medium voltage application, using a minimized number of cascaded modules. This SiC-based power electronics interface significantly reduces the complexity usually faced when Si devices are used directly in medium voltage applications. The voltage and state of charge balancing control for battery modules is also simplified and performs well. The simulation and experimental results, performed on a low-voltage prototype, verify the proposed topology that is presented in this paper.
more »
« less
Insights on Blackstart Provisioning Using a Synchronous Generator and Grid-Forming Inverter Using EMT Simulations
Grid-forming inverters (GFMIs) have been identified as critical assets in ensuring modern power system reliability. Their ability to synthesize an internal voltage reference while emulating synthetic inertia has sparked extensive research. These characteristics have recently piqued interest in their capacity to provide blackstart ancillary services. The blackstart of a bulk power system poses significant challenges, namely the large transients from the energization of unloaded transformers, rotational motor loads, and long transmission cables, which have been effectively studied using conventional synchronous generators (SGs). The concept of an inverter-based resource (IBR)-based blackstart continues to be an open research area necessitating further investigations due to the known limitations of IBRs such as low short-circuit current capabilities. This paper presents a blackstart case study of a bulk power system investigating the performances of a conventional SG to a GFMI when utilizing hard switching methods. The paper qualitatively investigates the transient inrush currents from the transformer and rotational load energization sequences. Additional examinations into the significance of the GFMI’s current-limiting schemes and voltage control loop compensator gains are presented. Furthermore, the harmonic distortions from the transformer energization sequence are also evaluated. Finally, a full network energization case is presented to demonstrate how both sources can provide blackstart provisioning services. The models are developed in EMTDC/PSCAD using real-world transmission planning data.
more »
« less
- Award ID(s):
- 1914635
- PAR ID:
- 10633061
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Energies
- Volume:
- 17
- Issue:
- 16
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 4067
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper describes a study evaluating 1.2 kV SiC MOSFETs in modular multilevel cascaded H-bridge (CHB) threephase inverter for medium voltage ac grid applications. The main purpose of this topology is to remove the need of a bulk 60 Hz transformer that is normally used to step up the output signal of a voltage source inverter to the medium voltage level. Using SiC devices (1.2 kV ~ 6.5 kV SiC MOSFETs), with their high breakdown voltage, enables the system to meet and withstand the medium voltage stress, with a minimized number of cascaded modules. The SiC-based power electronics, when used in the presented topology, they significantly reduce the complexity usually faced when Si devices are used to meet the medium voltage level and the power scalability. The simulation and preliminary experimental results, on a low-voltage prototype, verifies the ninelevel CHB topology that is presented in this paper.more » « less
-
Security is a well-known function to any transmission operator and system planner. As the world is moving toward the decarbonization of the power industry, it is more complicated for the system operators to maintain an acceptable level of security in the power system operation. More large-scale wind farms are being incorporated into the grid, and thus, the voltage stability concern is increasing. In practice, several contingencies are imagined by the system operators to assess the reliability of the grid. Since voltage stability is one of the major menaces that can trigger voltage instability in a power system, this paper is attempting to present to the transmission system planners and operators a dedicated methodology to facilitate the incorporation of large-scale wind farms into a transmission grid under high penetration of wind power. the stability of a wind-dominated power system is discussed based on Q-V and P-V methodologies and some N-1 contingencies with the Remedial Action Schemes (RAS). Furthermore, a methodology to rank the worst contingencies and to predict the voltage collapse during the highest wind penetration level is presented. Simulations have been, extensively, carried out to examine the methodology and have provided valuable information about the static security of the wind-dominated power system. The results can be used by the transmission system operator to anticipate voltage instability or voltage collapse in the power system during high wind penetration levels.more » « less
-
This paper introduces a 17-bus 500 kV test system intended for transmission expansion planning (TEP) studies. The overhead lines used in the system are based on an actual 500 kV transmission line geometry. Although several test systems have been developed for various forms of power system analysis, few are specifically tailored for TEP studies at the transmission voltage level, as opposed to the distribution voltage level. Current test systems for TEP studies are limited to single loading conditions only for normal operating conditions, and the majority of these systems are intertwined with issues related to the energy market or devised specifically for integrating new generations and loads into the existing power systems. However, ensuring a test system satisfies both voltage drop and line loading criteria during both normal and all single contingency operations is crucial in TEP studies, and addressing these issues under contingency conditions poses notable challenges. Moreover, practical TEP scenarios involve varied loadings, including peak load and dominant loading (60% of peak load) scenarios, while the existing test systems are configured solely for single loading conditions. To address these technical gaps, this paper introduces the 17-bus test system operating at a transmission voltage level of 500 kV, meeting technical requirements under normal and all single contingency operations for both peak load and dominant load scenarios. Detailed specifications of the proposed test system and load flow analysis at both normal and contingency conditions for different loading conditions are presented. This test system serves as an invaluable resource for TEP studies.more » « less
-
Distribution systems need significant voltage support with growing penetration of distributed generations especially intermittent renewable energy resources and smart loads. This paper introduces the application of the Multi-Port Solid State Transformer (MPSST) as an effective tool to support grid voltage at distribution level while integrating distributed energy resources. The solid state transformer replaces the conventional transformer between two voltage zones of distribution systems. Matlab/Simulink environment is used to simulate the IEEE 14 bus test system with an MPSST as a case study. The simulation results prove the effectiveness of the MPSST supporting the distribution system at local level in a fast and efficient manner in response to disturbances caused by load variations.more » « less
An official website of the United States government

