Centring is a commonly used technique in linear regression analysis. With centred data on both the responses and covariates, the ordinary least squares estimator of the slope parameter can be calculated from a model without the intercept. If a subsample is selected from a centred full data, the subsample is typically uncentred. In this case, is it still appropriate to fit a model without the intercept? The answer is yes, and we show that the least squares estimator on the slope parameter obtained from a model without the intercept is unbiased and it has a smaller variance covariance matrix in the Loewner order than that obtained from a model with the intercept. We further show that for noninformative weighted subsampling when a weighted least squares estimator is used, using the full data weighted means to relocate the subsample improves the estimation efficiency.
more »
« less
Characterization of the least squares estimator: Mis-specified multivariate isotonic regression model with dependent errors
This article investigates some nice properties of the least squares estimator of the multivariate isotonic regression function (denoted as LSEMIR) when the model is misspecified and the errors are beta-mixing stationary random variables. Under mild conditions, it is observed that the least squares estimator converges uniformly to a certain monotone function, which is closest to the original function in an appropriate sense.
more »
« less
- Award ID(s):
- 2152966
- PAR ID:
- 10633360
- Publisher / Repository:
- Theory of Probability and Mathematical Statistics
- Date Published:
- Journal Name:
- Theory of Probability and Mathematical Statistics
- Volume:
- 110
- Issue:
- 0
- ISSN:
- 0094-9000
- Page Range / eLocation ID:
- 143 to 158
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Matrix sketching is a powerful tool for reducing the size of large data matrices. Yet there are fundamental limitations to this size reduction when we want to recover an accurate estimator for a task such as least square regression. We show that these limitations can be circumvented in the distributed setting by designing sketching methods that minimize the bias of the estimator, rather than its error. In particular, we give a sparse sketching method running in optimal space and current matrix multiplication time, which recovers a nearly-unbiased least squares estimator using two passes over the data. This leads to new communication-efficient distributed averaging algorithms for least squares and related tasks, which directly improve on several prior approaches. Our key novelty is a new bias analysis for sketched least squares, giving a sharp characterization of its dependence on the sketch sparsity. The techniques include new higher moment restricted Bai-Silverstein inequalities, which are of independent interest to the non-asymptotic analysis of deterministic equivalents for random matrices that arise from sketching.more » « less
-
Abstract Projected least squares is an intuitive and numerically cheap technique for quantum state tomography: compute the least-squares estimator and project it onto the space of states. The main result of this paper equips this point estimator with rigorous, non-asymptotic convergence guarantees expressed in terms of the trace distance. The estimator’ssample complexityis comparable to the strongest convergence guarantees available in the literature and—in the case of the uniform POVM—saturates fundamental lower bounds. Numerical simulations support these competitive features.more » « less
-
This paper presents finite‐sample efficiency bounds for the core econometric problem of estimation of linear regression coefficients. We show that the classical Gauss–Markov theorem can be restated omitting the unnatural restriction to linear estimators, without adding any extra conditions. Our results are lower bounds on the variances of unbiased estimators. These lower bounds correspond to the variances of the the least squares estimator and the generalized least squares estimator, depending on the assumption on the error covariances. These results show that we can drop the label “linear estimator” from the pedagogy of the Gauss–Markov theorem. Instead of referring to these estimators as BLUE, they can legitimately be called BUE (best unbiased estimators).more » « less
-
Sequential data collection has emerged as a widely adopted technique for enhancing the efficiency of data gathering processes. Despite its advantages, such data collection mechanism often introduces complexities to the statistical inference procedure. For instance, the ordinary least squares (OLS) estimator in an adaptive linear regression model can exhibit non-normal asymptotic behavior, posing challenges for accurate inference and interpretation. In this paper, we propose a general method for constructing debiased estimator which remedies this issue. It makes use of the idea of adaptive linear estimating equations, and we establish theoretical guarantees of asymptotic normality, supplemented by discussions on achieving near-optimal asymptotic variance. A salient feature of our estimator is that in the context of multi-armed bandits, our estimator retains the non-asymptotic performance of the least squares estimator while obtaining asymptotic normality property. Consequently, this work helps connect two fruitful paradigms of adaptive inference: a) non-asymptotic inference using concentration inequalities and b) asymptotic inference via asymptotic normality.more » « less
An official website of the United States government

