skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 30, 2026

Title: Ferroelectric Memory Technology for Big Data Applications
Big Data has an insatiable appetite for larger and better-performing memory. While current memory technologies continue to advance, the performance gaps in current memory and storage technology have motivated the exploration of emerging memory technologies capable of providing new functionalities. Ferroelectric memory is one such promising candidate which has recently experienced a revival after the discovery of ferroelectricity in hafnium dioxide (HfO2) – the dielectric of choice in advanced CMOS manufacturing. While the commercial viability of ferroelectric memory technology has made significant progress over the past decade, several challenges related to variation and reliability still stand as a barrier to large-scale commercial implementation. Here, we review some of the outstanding challenges of ferroelectric memory technology along with the recent materials and device innovations that are being considered to overcome them. Moreover, we aim to highlight these challenges as materials and device co-design problems that must be addressed through collaborative efforts that straddle the two disciplines. We identify and provide our perspective on some of the key challenges and opportunities for ferroelectric-based microelectronic technology. Ferroelectrics non-volatile memory, in-memory computation  more » « less
Award ID(s):
2312886 2235366
PAR ID:
10634752
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
ISSN:
1539-9087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A synaptic memristor using 2D ferroelectric junctions is a promising candidate for future neuromorphic computing with ultra‐low power consumption, parallel computing, and adaptive scalable computing technologies. However, its utilization is restricted due to the limited operational voltage memory window and low on/off current (ION/OFF) ratio of the memristor devices. Here, it is demonstrated that synaptic operations of 2D In2Se3ferroelectric junctions in a planar memristor architecture can reach a voltage memory window as high as 16 V (±8 V) and ION/OFFratio of 108, significantly higher than the current literature values. The power consumption is 10−5 W at the on state, demonstrating low power usage while maintaining a large ION/OFFratio of 108compared to other ferroelectric devices. Moreover, the developed ferroelectric junction mimicked synaptic plasticity through pulses in the pre‐synapse. The nonlinearity factors are obtained 1.25 for LTP, −0.25 for LTD, respectively. The single‐layer perceptron (SLP) and convolutional neural network (CNN) on‐chip training results in an accuracy of up to 90%, compared to the 91% in an ideal synapse device. Furthermore, the incorporation of a 3 nm thick SiO2interface between the α‐In2Se3and the Au electrode resulted in ultrahigh performance among other 2D ferroelectric junction devices to date. 
    more » « less
  2. Abstract Ferroelectrics offer a promising material platform to realize energy-efficient non-volatile memory technology with the FeFET-based implementations being one of the most area-efficient ferroelectric memory architectures. However, the FeFET operation entails a fundamental trade-off between the read and the program operations. To overcome this trade-off, we propose in this work, a novel device concept, Mott-FeFET, that aims to replace the Silicon channel of the FeFET with VO2- a material that exhibits an electrically driven insulator–metal phase transition. The Mott-FeFET design, which demonstrates a (ferroelectric) polarization-dependent threshold voltage, enables the read current distinguishability (i.e., the ratio of current sensed when the Mott-FeFET is in state 1 and 0, respectively) to be independent of the program voltage. This enables the device to be programmed at low voltages without affecting the ability to sense/read the state of the device. Our work provides a pathway to realize low-voltage and energy-efficient non-volatile memory solutions. 
    more » « less
  3. The recent discovery of van der Waals (vdW) ferroelectric materials has inspired their incorporation into numerous nonvolatile technologies and shown potential promise for various device applications. Here in this perspective, we evaluate the recent developments in the field of vdW ferroelectric devices, with discussions focusing on vdW heterostructure ferroelectric field-effect transistors and vdW ferroelectric memristor technologies. Additionally, we discuss some of the many open questions that persist in these technologies and possible pathways research can take to answer these questions and further advance the understanding of vdW ferroelectric materials. 
    more » « less
  4. While ferroelectric HfO2shows promise for use in memory technologies, limited endurance is one factor that challenges its widespread application. Herein, endurance is investigated through field cycling W/Hf0.5Zr0.5O2/W capacitors above the coercive field while manipulating the time under field using bipolar pulses of varying pulse duration or duty cycle. Both remanent polarization and leakage current increase with increasing pulse duration. Additionally, an order of magnitude decrease in the pulse duration from 20 to 2 μs results in an increase in endurance lifetime of nearly two orders of magnitude from 3 × 106to 2 × 108cycles. These behaviors are attributed to increasing time under field allowing for charged oxygen vacancy migration, initially unpinning domains, or driving phase transformations before segregating to grain boundaries and electrode interfaces. This oxygen vacancy migration causes increasing polarization before creating conducting percolation paths that result in degradation and premature device failure. This process is suppressed for 2 μs pulse duration field cycling where minimal wake‐up and lower leakage before device failure are observed, suggesting that very short pulses can be used to significantly increase device endurance. These results provide insight into the impact of pulse duration on device performance and highlight consideration of use of conditions when endurance testing. 
    more » « less
  5. Abstract The discovery of ferroelectricity in AlN‐based thin films, including Al1‐xScxN and Al1‐xBxN, over the past few years has spurred great research interests worldwide. In this review, we carefully examined the latest developments for these ferroelectric films with respect to alloy composition, temperature, film thickness, deposition condition, and fatigue endurance by electric field cycling. Looking ahead, there is an urgent need to resolve the challenge of large current leakage faced by these films, which necessitates a combined efforts from both simulations and experiments to identify the root cause and eventually come up with engineering strategies to suppress such leakage. In addition, overcoming the thickness scaling challenge to push ferroelectric thin film down to a few nanometers for better device miniaturization will also be of great interest. Considering the somewhat unexpected discovery of AlN‐based thin films with potential ferroelectric application, we believe that it will be also rewarding to further explore other III‐V‐based semiconductor materials. 
    more » « less