skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: van der Waals ferroelectrics: Progress and an outlook for future research directions
The recent discovery of van der Waals (vdW) ferroelectric materials has inspired their incorporation into numerous nonvolatile technologies and shown potential promise for various device applications. Here in this perspective, we evaluate the recent developments in the field of vdW ferroelectric devices, with discussions focusing on vdW heterostructure ferroelectric field-effect transistors and vdW ferroelectric memristor technologies. Additionally, we discuss some of the many open questions that persist in these technologies and possible pathways research can take to answer these questions and further advance the understanding of vdW ferroelectric materials.  more » « less
Award ID(s):
2004655
PAR ID:
10426288
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
132
Issue:
16
ISSN:
0021-8979
Page Range / eLocation ID:
160901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Indium Selenide (In 2 Se 3 ) is a newly emerged van der Waals (vdW) ferroelectric material, which unlike traditional insulating ferroelectric materials, is a semiconductor with a bandgap of about 1.36 eV. Ferroelectric diodes and transistors based on In 2 Se 3 have been demonstrated. However, the interplay between light and electric polarization in In 2 Se 3 has not been explored. In this paper, we found that the polarization in In 2 Se 3 can be programmed by optical stimuli, due to its semiconducting nature, where the photo generated carriers in In 2 Se 3 can alter the screening field and lead to polarization reversal. Utilizing these unique properties of In 2 Se 3 , we demonstrated a new type of multifunctional device based on 2D heterostructures, which can concurrently serve as a logic gate, photodetector, electronic memory and photonic memory. This dual electrical and optical operation of the memories can simplify the device architecture and offer additional functionalities, such as ultrafast optical erase of large memory arrays. In addition, we show that dual-gate structure can address the partial switching problem commonly observed in In 2 Se 3 ferroelectric transistors, as the two gates can enhance the vertical electric field and facilitate the polarization switching in the semiconducting In 2 Se 3 . These discovered effects are of general nature and should be observable in any ferroelectric semiconductor. These findings deepen the understanding of polarization switching and light-polarization interaction in semiconducting ferroelectric materials and open up their applications in multifunctional electronic and photonic devices. 
    more » « less
  2. Abstract 2D van der Waals (vdW) materials are emerging as the next generation platform for optical and electronic devices with their wide coverage of the energy bandgaps. The strong light–matter interactions in 2D vdW layers allow for exploring novel optical and electronic phenomena such as 2D polaritons exhibiting ultrahigh field confinement, defects‐induced new quantum states, and strain‐modulated quantum confinement of 2D excitons. Far‐field optical imaging techniques are extensively used to characterize the 2D vdW materials so far, however, subdiffraction spatial resolution is required for comprehensive investigations of 2D vdW materials of which physical properties are greatly influenced by local defects and strain. This article aims to cover historical advances, fundamental principles, and distinct features of emerging near‐field optical imaging techniques: scattering‐type scanning near‐field optical microscopy, tip‐enhanced Raman spectroscopy, tip‐enhanced photoluminescence techniques, and photo‐induced force microscopy. The recent developments toward spectroscopic analysis of near‐field imaging and applications for unveiling unique properties of 2D polaritons, nanoscale defects, and mechanical strains in 2D vdW materials, are also discussed. This review article provides an understanding of emerging near‐field imaging techniques and suggests prospective applications for exploring 2D vdW materials. 
    more » « less
  3. Two-dimensional van der Waals (vdW) magnetic materials hold promise for the development of high-density, energy-efficient spintronic devices for memory and computation. Recent breakthroughs in material discoveries and spin-orbit torque control of vdW ferromagnets have opened a path for integration of vdW magnets in commercial spintronic devices. However, a solution for field-free electric control of perpendicular magnetic anisotropy (PMA) vdW magnets at room temperatures, essential for building compact and thermally stable spintronic devices, is still missing. Here, we report a solution for the field-free, deterministic, and nonvolatile switching of a PMA vdW ferromagnet, Fe3GaTe2, above room temperature (up to 320 K). We use the unconventional out-of-plane anti-damping torque from an adjacent WTe2layer to enable such switching with a low current density of 2.23 × 106A cm−2. This study exemplifies the efficacy of low-symmetry vdW materials for spin-orbit torque control of vdW ferromagnets and provides an all-vdW solution for the next generation of scalable and energy-efficient spintronic devices. 
    more » « less
  4. Big Data has an insatiable appetite for larger and better-performing memory. While current memory technologies continue to advance, the performance gaps in current memory and storage technology have motivated the exploration of emerging memory technologies capable of providing new functionalities. Ferroelectric memory is one such promising candidate which has recently experienced a revival after the discovery of ferroelectricity in hafnium dioxide (HfO2) – the dielectric of choice in advanced CMOS manufacturing. While the commercial viability of ferroelectric memory technology has made significant progress over the past decade, several challenges related to variation and reliability still stand as a barrier to large-scale commercial implementation. Here, we review some of the outstanding challenges of ferroelectric memory technology along with the recent materials and device innovations that are being considered to overcome them. Moreover, we aim to highlight these challenges as materials and device co-design problems that must be addressed through collaborative efforts that straddle the two disciplines. We identify and provide our perspective on some of the key challenges and opportunities for ferroelectric-based microelectronic technology. Ferroelectrics non-volatile memory, in-memory computation 
    more » « less
  5. Abstract For hardware artificial intelligence, the central task is to design and develop artificial synapses with needed characteristics. Here, the design and experimental demonstration of a van der Waals (vdW) photo‐ferroelectric synapse are reported. In the photo‐ferroelectric synapse, the synaptic memory is extracted by reading the photocurrent, and written or edited by electrical pulses. The semiconducting vdW organic‐inorganic halide perovskite ((R)‐(–)‐1‐cyclohexylethylammonium)PbI3(R‐CYHEAPbI3) photo‐ferroelectric serves as the model photo‐ferroelectric channel. Here, the vdW organic layer provides ferroelectric dipole and the PbI6octahedron is responsible for photon absorption and charge transport. The R‐CYHEAPbI3photo‐ferroelectric synapse show a writing/reading dynamics with >200 synaptic states, close to 103on/off ratio, and reasonable endurance and retention characteristics. With the experimentally measured weight dynamics (parallel reading through ferroelectric photovoltaic effect and writing by electrical pulses) of R‐CYHEAPbI3synapses, the feasibility of using a crossbar circuit to implement classic training and inference of hand‐written digits is presented. An image recognition accuracy of up to 90% is obtained. The demonstration of such a vdW photo‐ferroelectric synapse opens a window in the design of advanced devices for artificial intelligence. 
    more » « less