skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: A coronal mass ejection encountered by four spacecraft within 1 au from the Sun: ensemble modelling of propagation and magnetic structure
ABSTRACT Understanding and predicting the structure and evolution of coronal mass ejections (CMEs) in the heliosphere remains one of the most sought-after goals in heliophysics and space weather research. A powerful tool for improving current knowledge and capabilities consists of multispacecraft observations of the same event, which take place when two or more spacecraft fortuitously find themselves in the path of a single CME. Multiprobe events can not only supply useful data to evaluate the large-scale of CMEs from 1D in situ trajectories, but also provide additional constraints and validation opportunities for CME propagation models. In this work, we analyse and simulate the coronal and heliospheric evolution of a slow, streamer-blowout CME that erupted on 2021 September 23 and was encountered in situ by four spacecraft approximately equally distributed in heliocentric distance between 0.4 and 1 au. We employ the Open Solar Physics Rapid Ensemble Information modelling suite in ensemble mode to predict the CME arrival and structure in a hindcast fashion and to compute the ‘best-fitting’ solutions at the different spacecraft individually and together. We find that the spread in the predicted quantities increases with heliocentric distance, suggesting that there may be a maximum (angular and radial) separation between an inner and an outer probe beyond which estimates of the in situ magnetic field orientation (parametrized by flux rope model geometry) increasingly diverge. We discuss the importance of these exceptional observations and the results of our investigation in the context of advancing our understanding of CME structure and evolution as well as improving space weather forecasts.  more » « less
Award ID(s):
2147399
PAR ID:
10634773
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
RAS
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
536
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
203 to 222
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A fundamental property of coronal mass ejections (CMEs) is their radial expansion, which determines the increase in the CME radial size and the decrease in the CME magnetic field strength as the CME propagates. CME radial expansion can be investigated either by using remote observations or by in situ measurements based on multiple spacecraft in radial conjunction. However, there have been only few case studies combining both remote and in situ observations. It is therefore unknown if the radial expansion in the corona estimated remotely is consistent with that estimated locally in the heliosphere. To address this question, we first select 22 CME events between the years 2010 and 2013, which were well observed by coronagraphs and by two or three spacecraft in radial conjunction. We use the graduated cylindrical shell model to estimate the radial size, radial expansion speed, and a measure of the dimensionless expansion parameter of CMEs in the corona. The same parameters and two additional measures of the radial-size increase and magnetic-field-strength decrease with heliocentric distance of CMEs based on in situ measurements are also calculated. For most of the events, the CME radial size estimated by remote observations is inconsistent with the in situ estimates. We further statistically analyze the correlations of these expansion parameters estimated using remote and in situ observations, and discuss the potential reasons for the inconsistencies and their implications for the CME space weather forecasting. 
    more » « less
  2. Abstract On 2022 February 15, an impressive filament eruption was observed off the solar eastern limb from three remote-sensing viewpoints, namely, Earth, STEREO-A, and Solar Orbiter. In addition to representing the most-distant observed filament at extreme ultraviolet wavelengths—captured by Solar Orbiter's field of view extending to above 6R—this event was also associated with the release of a fast (∼2200 km s−1) coronal mass ejection (CME) that was directed toward BepiColombo and Parker Solar Probe. These two probes were separated by 2° in latitude, 4° in longitude, and 0.03 au in radial distance around the time of the CME-driven shock arrival in situ. The relative proximity of the two probes to each other and the Sun (∼0.35 au) allows us to study the mesoscale structure of CMEs at Mercury's orbit for the first time. We analyze similarities and differences in the main CME-related structures measured at the two locations, namely, the interplanetary shock, the sheath region, and the magnetic ejecta. We find that, despite the separation between the two spacecraft being well within the typical uncertainties associated with determination of CME geometric parameters from remote-sensing observations, the two sets of in situ measurements display some profound differences that make understanding the overall 3D CME structure particularly challenging. Finally, we discuss our findings within the context of space weather at Mercury's distance and in terms of the need to investigate solar transients via spacecraft constellations with small separations, which has been gaining significant attention during recent years. 
    more » « less
  3. Abstract Simultaneous in situ measurements of coronal mass ejections (CMEs), including both plasma and magnetic field, by two spacecraft in radial alignment have been extremely rare. Here, we report on one such CME measured by Solar Orbiter (SolO) and Wind on 2021 November 3–5, while the spacecraft were radially separated by a heliocentric distance of 0.13 au and angularly by only 2.2°. We focus on the magnetic cloud (MC) part of the CME. We find notable changes in theRandNmagnetic field components and in the speed profiles inside the MC between SolO and Wind. We observe a greater speed at the spacecraft farther away from the Sun without any clear compression signatures. Since the spacecraft are close to each other and computing fast magnetosonic wave speed inside the MC, we rule out temporal evolution as the reason for the observed differences, suggesting that spatial variations over 2.2° of the MC structure are at the heart of the observed discrepancies. Moreover, using shock properties at SolO, we forecast an arrival time 2 hr 30 minutes too late for a shock that is just 5 hr 31 minutes away from Wind. Predicting the north–south component of the magnetic field at Wind from SolO measurements leads to a relative error of 55%. These results show that even angular separations as low as 2.2° (or 0.03 au in arc length) between spacecraft can have a large impact on the observed CME properties, which raises the issue of the resolutions of current CME models, potentially affecting our forecasting capabilities. 
    more » « less
  4. Abstract In situ measurements from spacecraft typically provide a time series at a single location through coronal mass ejections (CMEs), and they have been one of the main methods to investigate CMEs. The CME properties derived from these in situ measurements are affected by temporal changes that occur as the CME passes over the spacecraft, such as radial expansion and aging, as well as spatial variations within a CME. This study uses multispacecraft measurements of the same CME at close separations to investigate both the spatial variability (how different a CME profile is when probed by two spacecraft close to each other) and the so-called aging effect (the effect of the time evolution on in situ properties). We compile a database of 19 events from the past 4 decades measured by two spacecraft with a radial separation of <0.2 au and an angular separation of <10°. We find that the average magnetic field strength measured by the two spacecraft differs by 18% of the typical average value, which highlights nonnegligible spatial or temporal variations. For one particular event, measurements taken by the two spacecraft allow us to quantify and significantly reduce the aging effect to estimate the asymmetry of the magnetic field strength profile. This study reveals that single-spacecraft time series near 1 au can be strongly affected by aging and that correcting for self-similar expansion does not capture the whole aging effect. 
    more » « less
  5. Context.Coronal mass ejections (CMEs) are large-scale structures of magnetized plasma that erupt from the corona into interplanetary space. The launch of Solar Orbiter (SolO) in 2020 enables in situ measurements of CMEs in the innermost heliosphere, at such distances where CMEs can be observed remotely within the inner field of view of heliospheric imagers (HIs). It thus provides the opportunity for investigations into the correspondence of the CME substructures measured in situ and observed remotely. We studied a CME that started on 2022 March 10 and was measured in situ by SolO at ∼0.44 au. Aims.Combining remote observations of CMEs from wide-angle imagers and in situ measurements in the innermost heliosphere allows us to compare CME properties derived through both techniques, validate the estimates, and better understand CME evolution, specifically the size and radial expansion, within 0.5 au. Methods.We compared the evolution of different CME substructures observed in images from the HIs on board the Ahead Solar Terrestrial Relations Observatory (STEREO-A) and the CME signatures measured in situ by SolO. The CME is found to possess a density enhancement at its rear edge in both remote and in situ observations, which validates the use of the signature of density enhancement following the CMEs to accurately identify the CME rear edge. We also estimated and compared the radial size and radial expansion speed of different substructures in both observations. Results.The evolution of the CME front and rear edges in remote images is consistent with the in situ CME measurements. The radial expansion (i.e., radial size and radial expansion speed) of the whole CME structure consisting of the magnetic ejecta and the sheath is consistent with the in situ estimates obtained at the same time from SolO. However, we do not find such consistencies for the magnetic ejecta region inside the CME because it is difficult to identify the magnetic ejecta edges in the remote images. 
    more » « less