Abstract While high latitude amplification is seen in modern observations, paleoclimate records, and climate modeling, better constraints on the magnitude and pattern of amplification would provide insights into the mechanisms that drive it, which remain actively debated. Here we present multi-proxy multi-site paleotemperature records over the last 10 million years from the Western Pacific Warm Pool (WPWP) – the warmest endmember of the global ocean that is uniquely important in the global radiative feedback change. These sea surface temperature records, based on lipid biomarkers and seawater Mg/Ca-adjusted foraminiferal Mg/Ca, unequivocally show warmer WPWP in the past, and a secular cooling over the last 10 million years. Compiling these data with existing records reveals a persistent, nearly stationary, extratropical response pattern in the Pacific in which high latitude (~50°N) temperatures increase by ~2.4° for each degree of WPWP warming. This relative warming pattern is also evident in model outputs of millennium-long climate simulations with quadrupling atmospheric CO2, therefore providing a strong constraint on the future equilibrium response of the Earth System. 
                        more » 
                        « less   
                    This content will become publicly available on October 1, 2026
                            
                            Connecting Warming Patterns of the Paleo‐Ocean to Our Future
                        
                    
    
            Abstract The evolution of the spatial pattern of ocean surface warming affects global radiative feedback, yet different climate models provide varying estimates of future patterns. Paleoclimate data, especially from past warm periods, can help constrain future equilibrium warming patterns. By analyzing marine temperature records spanning the past 10 million years with a regression‐based technique that removes temporal dimensions, we extract long‐term ocean warming patterns and quantify relative sea surface temperature changes across the global ocean. This analysis revealed a distinct pattern of amplified warming that aligns with equilibrated model simulations under high CO2conditions, yet differs from the transient warming pattern observed over the past 160 years. This paleodata‐model comparison allows us to identify models that better capture fundamental aspects of Earth's warming response, while suggesting how ocean heat uptake and circulation changes modify the development of warming patterns over time. By combining this paleo‐ocean warming pattern with equilibrated model simulations, we characterized the likely evolution of global ocean warming as the climate system approaches equilibrium. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10636061
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- AGU Advances
- Volume:
- 6
- Issue:
- 5
- ISSN:
- 2576-604X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract This study investigates the formation mechanism of the ocean surface warming pattern in response to a doubling CO2with a focus on the role of ocean heat uptake (or ocean surface heat flux change, ΔQnet). We demonstrate that thetransientpatterns of surface warming and rainfall change simulated by the dynamic ocean–atmosphere coupled model (DOM) can be reproduced by theequilibriumsolutions of the slab ocean–atmosphere coupled model (SOM) simulations when forced with the DOM ΔQnetdistribution. The SOM is then used as a diagnostic inverse modeling tool to decompose the CO2-induced thermodynamic warming effect and the ΔQnet(ocean heat uptake)–induced cooling effect. As ΔQnetis largely positive (i.e., downward into the ocean) in the subpolar oceans and weakly negative at the equator, its cooling effect is strongly polar amplified and opposes the CO2warming, reducing the net warming response especially over Antarctica. For the same reason, the ΔQnet-induced cooling effect contributes significantly to the equatorially enhanced warming in all three ocean basins, while the CO2warming effect plays a role in the equatorial warming of the eastern Pacific. The spatially varying component of ΔQnet, although globally averaged to zero, can effectively rectify and lead to decreased global mean surface temperature of a comparable magnitude as the global mean ΔQneteffect under transient climate change. Our study highlights the importance of air–sea interaction in the surface warming pattern formation and the key role of ocean heat uptake pattern.more » « less
- 
            Abstract Coupled global climate models (GCMs) generally fail to reproduce the observed sea‐surface temperature (SST) trend pattern since the 1980s. The model‐observation discrepancies may arise in part from the lack of realistic Antarctic ice‐sheet meltwater input in GCMs. Here we employ two sets of CESM1‐CAM5 simulations forced by anomalous Antarctic meltwater fluxes over 1980–2013 and through the 21st century. Both show a reduced global warming rate and an SST trend pattern that better resembles observations. The meltwater drives surface cooling in the Southern Ocean and the tropical southeast Pacific, in turn increasing low‐cloud cover and driving radiative feedbacks to become more stabilizing (corresponding to a lower effective climate sensitivity). These feedback changes can contribute as substantially as ocean heat uptake efficiency changes in reducing the global warming rate. Accurately projecting historical and future warming thus requires improved representation of Antarctic meltwater and its impacts.more » « less
- 
            Ocean deoxygenation due to anthropogenic warming represents a major threat to marine ecosystems and fisheries. Challenges remain in simulating the modern observed changes in the dissolved oxygen (O2). Here, we present an analysis of upper ocean (0-700m) deoxygenation in recent decades from a suite of the Coupled Model Intercomparison Project phase 6 (CMIP6) ocean biogeochemical simulations. The physics and biogeochemical simulations include both ocean-only (the Ocean Model Intercomparison Project Phase 1 and 2, OMIP1 and OMIP2) and coupled Earth system (CMIP6 Historical) configurations. We examine simulated changes in the O2inventory and ocean heat content (OHC) over the past 5 decades across models. The models simulate spatially divergent evolution of O2trends over the past 5 decades. The trend (multi-model mean and spread) for upper ocean global O2inventory for each of the MIP simulations over the past 5 decades is 0.03 ± 0.39×1014 [mol/decade] for OMIP1, −0.37 ± 0.15×1014[mol/decade] for OMIP2, and −1.06 ± 0.68×1014[mol/decade] for CMIP6 Historical, respectively. The trend in the upper ocean global O2inventory for the latest observations based on the World Ocean Database 2018 is −0.98×1014[mol/decade], in line with the CMIP6 Historical multi-model mean, though this recent observations-based trend estimate is weaker than previously reported trends. A comparison across ocean-only simulations from OMIP1 and OMIP2 suggests that differences in atmospheric forcing such as surface wind explain the simulated divergence across configurations in O2inventory changes. Additionally, a comparison of coupled model simulations from the CMIP6 Historical configuration indicates that differences in background mean states due to differences in spin-up duration and equilibrium states result in substantial differences in the climate change response of O2. Finally, we discuss gaps and uncertainties in both ocean biogeochemical simulations and observations and explore possible future coordinated ocean biogeochemistry simulations to fill in gaps and unravel the mechanisms controlling the O2changes.more » « less
- 
            Abstract Transient climate sensitivity is strongly shaped by geographical patterns of ocean heat uptake (OHU). To isolate the effects of uncertainties associated with OHU, a single slab ocean model is forced with doubled CO2and an ensemble of OHU patterns diagnosed from transient warming scenarios in 12 fully coupled models. The single-model ensemble produces a wide range of Southern Ocean (SO) sea surface temperature (SST) and Antarctic sea ice responses, which are in turn associated with a 1.1–2.0-K range of transient climate response (TCR). Feedback analysis attributes the TCR spread primarily to shortwave effects of low clouds in the Southern Hemisphere (SH) midlatitudes. These cloud changes are strongly positively correlated with storm-track eddy kinetic energy. It is argued that midlatitude clouds (and thus planetary albedo) are remotely driven by SO SST and Antarctic sea ice, mediated by large-scale changes in SH baroclinicity and lower-tropospheric stability. The robustness of this atmospheric teleconnection between SO SST, Antarctic sea ice, and global feedback through midlatitude clouds is supported through additional simulations that explore more extreme SST and sea ice perturbations. These results highlight the importance of understanding physical relationships between SST, sea ice, circulation, and cloud changes in the SH as a pathway to better constraining transient climate sensitivity. Significance StatementAlthough it is well known that Earth’s global-mean surface temperature increases with increasing atmospheric CO2, there are still significant uncertainties in the temperature and sea ice trends over the Southern Ocean region. Using a climate model, we find that Southern Ocean temperature and Antarctic sea ice changes can result in substantial cloud cover changes over the Southern Hemisphere, which play a primary role in determining the amount of warming in our experiments. We suggest that, in order to reduce uncertainty in future climate change, more work is needed to understand how the climate of the southern polar region can affect the circulation and clouds of the midlatitudes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
