In this Letter, we perform fits to decays, where and the pseudoscalar , under the assumption of flavor SU(3) symmetry [ ]. Although the fits to or decays individually are good, the combined fit is very poor: there is a disagreement with the limit of the standard model ( ). One can remove this discrepancy by adding -breaking effects, but 1000% breaking is required. The above results are rigorous, group theoretically—no dynamical assumptions have been made. When one adds an assumption motivated by QCD factorization, the discrepancy with the grows to . Published by the American Physical Society2024
more »
« less
This content will become publicly available on September 15, 2026
Anomalies in hadronic B decays: An update
Recently, decays ( , ) were analyzed under the assumption of flavor SU(3) symmetry ( ). Although the individual fits to or decays are good, it was found that the combined fit is very poor: there is a disagreement with the limit of the standard model ( ). One can remove this discrepancy by adding -breaking effects, but 1000% breaking is required. In this paper, we extend this analysis to include decays in which there is an and/or meson in the final state. We now find that the combined fit exhibits a discrepancy with the , and 1000% -breaking effects are still required to explain the data. These results are rigorous, group-theoretically—no theoretical assumptions have been made. But when one adds some theoretical input motivated by QCD factorization, the discrepancy with the grows to .
more »
« less
- Award ID(s):
- 2310627
- PAR ID:
- 10636128
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 112
- Issue:
- 5
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A study is presented of and decays based on the analysis of proton-proton collision data collected with the LHCb detector at center-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of . The invariant-mass distributions of both decay modes show, in the mass region, large activity which is resolved using an amplitude analysis. A simple model, where amplitudes are described by multiple Breit-Wigner functions with appropriate angular distributions, provides a good description of the experimental data. In this approach a complex mixture of , and amplitudes is observed that is dominated by , , , , and resonances. The Dalitz plots are dominated by asymmetric crossing bands which are different for the two decay modes. This is due to a different interference pattern between the and amplitudes in the two channels. Branching fractions are measured for each resonant contribution. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
We describe a measurement of charge-parity ( ) violation asymmetries in decays using Belle II data. We consider and decays. The data were collected at the SuperKEKB asymmetric-energy collider between the years 2019 and 2022, and contain bottom-antibottom meson pairs. We reconstruct signal decays and extract the violating parameters from a fit to the distribution of the proper-decay-time difference between the two mesons. The measured direct and mixing-induced asymmetries are and , respectively, where the first uncertainties are statistical and the second are systematic. These results are in agreement with current world averages and standard model predictions. Published by the American Physical Society2024more » « less
-
The first observation of the decay and measurement of the branching ratio of to are presented. The and mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at in 2016–2018, corresponding to an integrated luminosity of . The branching fraction ratio is measured to be , where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the baryon mass and natural width are also presented, using the final state, where the baryon is reconstructed through the decays , , , and . Finally, the fraction of baryons produced from decays is determined. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
-
We report the first evidence for the transition with a significance of 3.5 standard deviations. The decay branching fraction is measured to be , which is noticeably smaller than expected. We also set upper limits on transitions of , and , at the 90% confidence level. These results are obtained with a data sample collected near the resonance with the Belle detector at the KEKB asymmetric-energy collider. Published by the American Physical Society2024more » « less
An official website of the United States government
