For continual scaling in microelectronics, new processes for precise high volume fabrication are required. Area-selective atomic layer deposition (ASALD) can provide an avenue for self-aligned material patterning and offers an approach to correct edge placement errors commonly found in top-down patterning processes. Two-dimensional transition metal dichalcogenides also offer great potential in scaled microelectronic devices due to their high mobilities and few-atom thickness. In this work, we report ASALD of MoS2 thin films by deposition with MoF6 and H2S precursor reactants. The inherent selectivity of the MoS2 atomic layer deposition (ALD) process is demonstrated by growth on common dielectric materials in contrast to thermal oxide/ nitride substrates. The selective deposition produced few layer MoS2 films on patterned growth regions as measured by Raman spectroscopy and time-of-flight secondary ion mass spectrometry. We additionally demonstrate that the selectivity can be enhanced by implementing atomic layer etching (ALE) steps at regular intervals during MoS2 growth. This area-selective ALD process provides an approach for integrating 2D films into next-generation devices by leveraging the inherent differences in surface chemistries and providing insight into the effectiveness of a supercycle ALD and ALE process.
more »
« less
Modification of High-Surface-Area Carbons Using Self-Limited Atomic Layer Deposition
This study explores the application of Atomic Layer Deposition (ALD) to functionalize high-surface-area carbon supports with metal and metal oxide films and particles for applications in catalysis and electrocatalysis. The work reported here demonstrates that, through careful choice of precursors and absorption and reaction conditions, self-limited ALD growth on a high-surface-area carbon support can be achieved. Specific examples presented include the growth of conformal films of ZrO2 and SnO2 and the deposition of Ga2O3 and Pt particles on a carbon black support with a surface area of 250 m2·g−1. A novel strategy for controlling the Pt weight loading and producing sub-nanometer Pt particles on a carbon support using a single ALD cycle is also presented.
more »
« less
- Award ID(s):
- 2323701
- PAR ID:
- 10636370
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Catalysts
- Volume:
- 14
- Issue:
- 11
- ISSN:
- 2073-4344
- Page Range / eLocation ID:
- 786
- Subject(s) / Keyword(s):
- carbon black ALD metal oxide metal
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modern-day chip manufacturing requires precision in placing chip materials on complex and patterned structures. Area-selective atomic layer deposition (AS-ALD) is a self-aligned manufacturing technique with high precision and control, which offers cost effectiveness compared to the traditional patterning techniques. Self-assembled monolayers (SAMs) have been explored as an avenue for realizing AS-ALD, wherein surface-active sites are modified in a specific pattern via SAMs that are inert to metal deposition, enabling ALD nucleation on the substrate selectively. However, key limitations have limited the potential of AS-ALD as a patterning method. The choice of molecules for ALD blocking SAMs is sparse; furthermore, deficiency in the proper understanding of the SAM chemistry and its changes upon metal layer deposition further adds to the challenges. In this work, we have addressed the above challenges by using nanoscale infrared spectroscopy to investigate the potential of stearic acid (SA) as an ALD inhibiting SAM. We show that SA monolayers on Co and Cu substrates can inhibit ZnO ALD growth on par with other commonly used SAMs, which demonstrates its viability towards AS-ALD. We complement these measurements with AFM-IR, which is a surface-sensitive spatially resolved technique, to obtain spectral insights into the ALD-treated SAMs. The significant insight obtained from AFM-IR is that SA SAMs do not desorb or degrade with ALD, but rather undergo a change in substrate coordination modes, which can affect ALD growth on substrates.more » « less
-
The scalable and facile preparation of single-atom catalysts remains a critical challenge. Here, we introduce Diluted Atomic Layer Deposition (DALD), a unique approach for synthesizing supported metal catalysts with precisely tunable loadings. Unlike conventional metal deposition by ALD which uses pure metal precursors, DALD employs a diluted precursor mixture, combining organometallic precursors with the corresponding free ligand in controlled ratios. The method enables precise control over metal loadings, allowing the synthesis of structures ranging from nanoparticles to isolated single atoms, as exemplified by Ir, Rh, and Pt on high-surface-area γ-Al2O3. With its inherent simplicity and exceptional efficiency in metal precursor utilization, DALD represents a highly scalable strategy, unlocking opportunities for integrating single-atom catalysts into industrial processes.more » « less
-
Single-atom catalysts have the advantage of high chemical efficiency, which requires atomic-scale control during catalyst formation. In order to address this challenge, this work explores the synthesis of single-atom platinum (SA-Pt) catalysts using atomic-layer deposition (ALD) on vertical graphene (VG), in which a large number of graphene edges serve as energetically favorable nucleation sites for SA-Pt, as predicted by density functional theory calculations. Interestingly, SA-Pt has been achieved on VGs at low ALD cycle numbers of up to 60. With a further increase in the number of ALD cycles, an increasing number of Pt clusters with diameters <2 nm and Pt nanoparticles (NPs) with diameters >2 nm become dominant (nano-Pt @VG). This is in contrast to the observation of predominantly nano-Pt on other carbon nanostructures, such as carbon nanotubes and monolayer graphene, under the same ALD growth conditions, indicating that the edge states on VG indeed play a critical role in facilitating the formation of SA-Pt. Profound differences are revealed in a comparative study on H2 sensing. SA-Pt exhibits both a higher sensitivity and faster response than its nano-Pt counterpart by more than an order of magnitude, illustrating the high catalytic efficiency of SAPt and its potential for gas sensing and a variety of other catalytic applications.more » « less
-
To enable greater control over thermal atomic layer deposition (ALD) of molybdenum disulfide (MoS 2 ), here we report studies of the reactions of molybdenum hexafluoride (MoF 6 ) and hydrogen sulfide (H 2 S) with metal oxide substrates from nucleation to few-layer films. In situ quartz crystal microbalance experiments performed at 150, 200, and 250 °C revealed temperature-dependent nucleation behavior of the MoF 6 precursor, which is attributed to variations in surface hydroxyl concentration with temperature. In situ Fourier transform infrared spectroscopy coupled with ex situ x-ray photoelectron spectroscopy (XPS) indicated the presence of molybdenum oxide and molybdenum oxyfluoride species during nucleation. Density functional theory calculations additionally support the formation of these species as well as predicted metal oxide to fluoride conversion. Residual gas analysis revealed reaction by-products, and the combined experimental and computational results provided insights into proposed nucleation surface reactions. With additional ALD cycles, Fourier transform infrared spectroscopy indicated steady film growth after ∼13 cycles at 200 °C. XPS revealed that higher deposition temperatures resulted in a higher fraction of MoS 2 within the films. Deposition temperature was found to play an important role in film morphology with amorphous films obtained at 200 °C and below, while layered films with vertical platelets were observed at 250 °C. These results provide an improved understanding of MoS 2 nucleation, which can guide surface preparation for the deposition of few-layer films and advance MoS 2 toward integration into device manufacturing.more » « less
An official website of the United States government
