The placement of vegetation plays a central role in the realism of virtual scenes. We introduce procedural placement models (PPMs) for vegetation in urban layouts. PPMs are environmentally sensitive to city geometry and allow identifying plausible plant positions based on structural and functional zones in an urban layout. PPMs can either be directly used by defining their parameters or learned from satellite images and land register data. This allows us to populate urban landscapes with complex 3D vegetation and enhance existing approaches for generating urban landscapes. Our framework’s effectiveness is shown through examples of large-scale city scenes and close-ups of individually grown tree models. We validate the results generated with our framework with a perceptual user study and its usability based on urban scene design sessions with expert users.
more »
« less
This content will become publicly available on December 19, 2025
Large Scale Farm Scene Modeling from Remote Sensing Imagery
In this paper we propose a scalable framework for large-scale farm scene modeling that utilizes remote sensing data, specifically satellite images. Our approach begins by accurately extracting and categorizing the distributions of various scene elements from satellite images into four distinct layers: fields, trees, roads, and grasslands. For each layer, we introduce a set of controllable Parametric Layout Models (PLMs). These models are capable of learning layout parameters from satellite images, enabling them to generate complex, large-scale farm scenes that closely reproduce reality across multiple scales. Additionally, our framework provides intuitive control for users to adjust layout parameters to simulate different stages of crop growth and planting patterns. This adaptability makes our model an excellent tool for graphics and virtual reality applications. Experimental results demonstrate that our approach can rapidly generate a variety of realistic and highly detailed farm scenes with minimal inputs.
more »
« less
- Award ID(s):
- 2005430
- PAR ID:
- 10637058
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 43
- Issue:
- 6
- ISSN:
- 0730-0301
- Page Range / eLocation ID:
- 1 to 12
- Subject(s) / Keyword(s):
- Image-based modeling, procedural modeling, farm scene modeling, remote sensing images, parametric layout models
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Internet image collections containing photos captured by crowds of photographers show promise for enabling digital exploration of large‐scale tourist landmarks. However, prior works focus primarily on geometric reconstruction and visualization, neglecting the key role of language in providing a semantic interface for navigation and fine‐grained understanding. In more constrained 3D domains, recent methods have leveraged modern vision‐and‐language models as a strong prior of 2D visual semantics. While these models display an excellent understanding of broad visual semantics, they struggle with unconstrained photo collections depicting such tourist landmarks, as they lack expert knowledge of the architectural domain and fail to exploit the geometric consistency of images capturing multiple views of such scenes. In this work, we present a localization system that connects neural representations of scenes depicting large‐scale landmarks with text describing a semantic region within the scene, by harnessing the power of SOTA vision‐and‐language models with adaptations for understanding landmark scene semantics. To bolster such models with fine‐grained knowledge, we leverage large‐scale Internet data containing images of similar landmarks along with weakly‐related textual information. Our approach is built upon the premise that images physically grounded in space can provide a powerful supervision signal for localizing new concepts, whose semantics may be unlocked from Internet textual metadata with large language models. We use correspondences between views of scenes to bootstrap spatial understanding of these semantics, providing guidance for 3D‐compatible segmentation that ultimately lifts to a volumetric scene representation. To evaluate our method, we present a new benchmark dataset containing large‐scale scenes with ground‐truth segmentations for multiple semantic concepts. Our results show that HaLo‐NeRF can accurately localize a variety of semantic concepts related to architectural landmarks, surpassing the results of other 3D models as well as strong 2D segmentation baselines. Our code and data are publicly available at https://tau‐vailab.github.io/HaLo‐NeRF/more » « less
-
Abstract Underwater imaging enables nondestructive plankton sampling at frequencies, durations, and resolutions unattainable by traditional methods. These systems necessitate automated processes to identify organisms efficiently. Early underwater image processing used a standard approach: binarizing images to segment targets, then integrating deep learning models for classification. While intuitive, this infrastructure has limitations in handling high concentrations of biotic and abiotic particles, rapid changes in dominant taxa, and highly variable target sizes. To address these challenges, we introduce a new framework that starts with a scene classifier to capture large within‐image variation, such as disparities in the layout of particles and dominant taxa. After scene classification, scene‐specific Mask regional convolutional neural network (Mask R‐CNN) models are trained to separate target objects into different groups. The procedure allows information to be extracted from different image types, while minimizing potential bias for commonly occurring features. Using in situ coastal plankton images, we compared the scene‐specific models to the Mask R‐CNN model encompassing all scene categories as a single full model. Results showed that the scene‐specific approach outperformed the full model by achieving a 20% accuracy improvement in complex noisy images. The full model yielded counts that were up to 78% lower than those enumerated by the scene‐specific model for some small‐sized plankton groups. We further tested the framework on images from a benthic video camera and an imaging sonar system with good results. The integration of scene classification, which groups similar images together, can improve the accuracy of detection and classification for complex marine biological images.more » « less
-
We use neural radiance fields (NeRFs) to build interactive 3D environments from large-scale visual captures spanning buildings or even multiple city blocks collected primarily from drones. In contrast to single object scenes (on which NeRFs are traditionally evaluated), our scale poses multiple challenges including (1) the need to model thousands of images with varying lighting conditions, each of which capture only a small subset of the scene, (2) prohibitively large model capacities that make it infeasible to train on a single GPU, and (3) significant challenges for fast rendering that would enable interactive fly-throughs. To address these challenges, we begin by analyzing visibility statistics for large-scale scenes, motivating a sparse network structure where parameters are specialized to different regions of the scene. We introduce a simple geometric clustering algorithm for data parallelism that partitions training images (or rather pixels) into different NeRF sub-modules that can be trained in parallel. We evaluate our approach on existing datasets (Quad 6k and UrbanScene3D) as well as against our own drone footage, improving training speed by 3x and PSNR by 12%. We also evaluate recent NeRF fast renderers on top of Mega-NeRF and introduce a novel method that exploits temporal coherence. Our technique achieves a 40x speedup over conventional NeRF rendering while remaining within 0.8 db in PSNR quality, exceeding the fidelity of existing fast renderers.more » « less
-
A promising direction toward improving the performance of wave energy converter (WEC) farms is to leverage a system-level integrated approach called control co-design (CCD), integrating geometric attributes, control parameters, and layout. However, the resulting optimization problem requires the estimation of hydrodynamic coefficients through computationally prohibitive numerical methods such as multiple scattering (MS). To mitigate this bottleneck, we construct data-driven surrogate models (SMs) using artificial neural networks and many-body expansion. To rectify errors in SMs, a hybrid optimization strategy, that involves solving an optimization problem with a genetic algorithm and SMs to generate a starting point which is then used by a gradient-based optimizer and MS, is devised. The effectiveness and efficiency of the proposed approach are demonstrated for a 5-WEC farm. For layout optimization study, the proposed framework offers a 91-fold increase in computational efficiency compared to the direct usage of MS. The framework also enables complex investigations, including concurrent geometry, control, and layout optimization of heaving cylindrical WEC devices in probabilistic irregular waves across various US coastal locations. The method’s scalability is assessed for a 25-WEC farm and the results indicate promising directions toward a practical framework for integrated WEC farm design with more tractable computational demands.more » « less
An official website of the United States government
