skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Quad-Tree-Based Driver Classification Using Deep Learning for Mild Cognitive Impairment Detection
Given GPS points on a transportation network, the goal of the Quad-tree Based Driver Classification (QBDC) problem is to identify whether drivers have Mild Cognitive Impairment (MCI). The QBDC problem is challenging due to the large volume and complexity of the data. This paper proposes a quad-tree based approach to the QBDC problem by analyzing driving patterns using a real-world dataset. We propose a geo-regional quad-tree structure to capture the spatial hierarchy of driving trajectories and introduce new driving features representation for input into a convolutional neural network (CNN) for driver classification. The experimental results demonstrate the effectiveness of the proposed algorithm, achieving an F1 score of 95% that significantly outperforms the baseline models. These results highlight the potential of geo-regional quad-tree structures to extract interpretable features and describe complex driving patterns. This approach offers significant implications for driver classification, with the potential to improve road safety and cognitive health monitoring.  more » « less
Award ID(s):
1844565
PAR ID:
10639189
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
IEEE Access Volume: 13
Date Published:
Journal Name:
IEEE Access
Volume:
13
ISSN:
2169-3536
Page Range / eLocation ID:
63129 to 63142
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Driver maneuver interaction learning (DMIL) refers to the classification task with the goal of identifying different driver-vehicle maneuver interactions (e.g., left/right turns). Existing conventional studies largely focused on the centralized collection of sensor data from the drivers' smartphones (say, inertial measurement units or IMUs, like accelerometer and gyroscope). Such a centralized mechanism might be precluded by data regulatory constraints. Furthermore, how to enable an adaptive and accurate DMIL framework remains challenging due to (i) complexity in heterogeneous driver maneuver patterns, and (ii) impacts of anomalous driver maneuvers due to, for instance, aggressive driving styles and behaviors. To overcome the above challenges, we propose AF-DMIL, an Anomaly-aware Federated Driver Maneuver Interaction Learning system. We focus on the real-world IMU sensor datasets (e.g., collected by smartphones) for our pilot case study. In particular, we have designed three heterogeneous representations for AF-DMIL regarding spectral, time series, and statistical features that are derived from the IMU sensor readings. We have designed a novel heterogeneous representation attention network (HetRANet) based on spectral channel attention, temporal sequence attention, and statistical feature learning mechanisms, jointly capturing and identifying the complex patterns within driver maneuver behaviors. Furthermore, we have designed a densely-connected convolutional neural network in HetRANet to enable the complex feature extraction and enhance the computational efficiency of HetRANet. In addition, we have designed within AF-DMIL a novel anomaly-aware federated learning approach for decentralized DMIL in response to anomalous maneuver data. To ease extraction of the maneuver patterns and evaluation of their mutual differences, we have designed an embedding projection network that projects the high-dimensional driver maneuver features into low-dimensional space, and further derives the exemplars that represent the driver maneuver patterns for mutual comparison. Then, AF-DMIL further leverages the mutual differences of the exemplars to identify those that exhibit anomalous patterns and deviate from others, and mitigates their impacts upon the federated DMIL. We have conducted extensive driver data analytics and experimental studies on three real-world datasets (one is harvested on our own) to evaluate the prototype of AF-DMIL, demonstrating AF-DMIL's accuracy and effectiveness compared to the state-of-the-art DMIL baselines (on average by more than 13% improvement in terms of DMIL accuracy), as well as fewer communication rounds (on average 29.20% fewer than existing distributed learning mechanisms). 
    more » « less
  2. Mobile edge and vehicle-based depth sending and real-time point cloud communication is an essential subtask enabling autonomous driving. In this paper, we propose a framework for point cloud multicast in VANETs using vehicle to infrastructure (V2I) communication. We employ a scalable Binary Tree embedded Quad Tree (BTQT) point cloud source encoder with bitrate elasticity to match with an adaptive random network coding (ARNC) to multicast different layers to the vehicles. The scalability of our BTQT encoded point cloud provides a trade-off in the received voxel size/quality vs channel condition whereas the ARNC helps maximize the throughput under a hard delay constraint. The solution is tested with the outdoor 3D point cloud dataset from MERL for autonomous driving. The users with good channel conditions receive a near lossless point cloud whereas users with bad channel conditions are still able to receive at least the base layer point cloud. 
    more » « less
  3. Abstract This paper introduces a study on the classification of aortic stenosis (AS) based on cardio-mechanical signals collected using non-invasive wearable inertial sensors. Measurements were taken from 21 AS patients and 13 non-AS subjects. A feature analysis framework utilizing Elastic Net was implemented to reduce the features generated by continuous wavelet transform (CWT). Performance comparisons were conducted among several machine learning (ML) algorithms, including decision tree, random forest, multi-layer perceptron neural network, and extreme gradient boosting. In addition, a two-dimensional convolutional neural network (2D-CNN) was developed using the CWT coefficients as images. The 2D-CNN was made with a custom-built architecture and a CNN based on Mobile Net via transfer learning. After the reduction of features by 95.47%, the results obtained report 0.87 on accuracy by decision tree, 0.96 by random forest, 0.91 by simple neural network, and 0.95 by XGBoost. Via the 2D-CNN framework, the transfer learning of Mobile Net shows an accuracy of 0.91, while the custom-constructed classifier reveals an accuracy of 0.89. Our results validate the effectiveness of the feature selection and classification framework. They also show a promising potential for the implementation of deep learning tools on the classification of AS. 
    more » « less
  4. Objectives: This paper introduces a novel method for the detection and classification of aortic stenosis (AS) using the time-frequency features of chest cardio-mechanical signals collected from wearable sensors, namely seismo-cardiogram (SCG) and gyro-cardiogram (GCG) signals. Such a method could potentially monitor high-risk patients out of the clinic. Methods: Experimental measurements were collected from twenty patients with AS and twenty healthy subjects. Firstly, a digital signal processing framework is proposed to extract time-frequency features. The features are then selected via the analysis of variance test. Different combinations of features are evaluated using the decision tree, random forest, and artificial neural network methods. Two classification tasks are conducted. The first task is a binary classification between normal subjects and AS patients. The second task is a multi-class classification of AS patients with co-existing valvular heart diseases. Results: In the binary classification task, the average accuracies achieved are 96.25% from decision tree, 97.43% from random forest, and 95.56% from neural network. The best performance is from combined SCG and GCG features with random forest classifier. In the multi-class classification, the best performance is 92.99% using the random forest classifier and SCG features. Conclusion: The results suggest that the solution could be a feasible method for classifying aortic stenosis, both in the binary and multi-class tasks. It also indicates that most of the important time-frequency features are below 11 Hz. Significance: The proposed method shows great potential to provide continuous monitoring of valvular heart diseases to prevent patients from sudden critical cardiac situations. 
    more » « less
  5. Learning explicit and implicit patterns in human trajectories plays an important role in many Location-Based Social Networks (LBSNs) applications, such as trajectory classification (e.g., walking, driving, etc.), trajectory-user linking, friend recommendation, etc. A particular problem that has attracted much attention recently – and is the focus of our work – is the Trajectory-based Social Circle Inference (TSCI), aiming at inferring user social circles (mainly social friendship) based on motion trajectories and without any explicit social networked information. Existing approaches addressing TSCI lack satisfactory results due to the challenges related to data sparsity, accessibility and model efficiency. Motivated by the recent success of machine learning in trajectory mining, in this paper we formulate TSCI as a novel multi-label classification problem and develop a Recurrent Neural Network (RNN)-based framework called DeepTSCI to use human mobility patterns for inferring corresponding social circles. We propose three methods to learn the latent representations of trajectories, based on: (1) bidirectional Long Short-Term Memory (LSTM); (2) Autoencoder; and (3) Variational autoencoder. Experiments conducted on real-world datasets demonstrate that our proposed methods perform well and achieve significant improvement in terms of macro-R, macro-F1 and accuracy when compared to baselines. 
    more » « less