skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 18, 2026

Title: Event Workflow Management System: A Robust Technique for Massively Divisible and Distributed Workflows
Batch systems face issues with workloads comprising millions of tasks with short runtimes—scheduling is most efficient for long-running jobs. In addition, the nature of heterogeneous computing systems makes task bundling impractical. Building on HTCondor, the Event Workflow Management System (EWMS) provides an efficient solution to thrive with both paradigms, while featuring user-friendly and self-healing principles. Here, we describe this method, its implementation, and a real-world application.  more » « less
Award ID(s):
2103963
PAR ID:
10639270
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A general formulation of piecewise linear systems with discontinuous force elements is provided in this paper. It has been demonstrated that this class of nonlinear systems is of great importance due to their ability to accurately model numerous scientific and engineering phenomena. Additionally, it is shown that this class of nonlinear systems can demonstrate a wide spectrum of nonlinear motions and in fact, the phenomenon of weak chaos is observed in a mechanical assembly for the first time. Despite such importance, efficient methods for fast and accurate evaluation of piecewise linear systems’ responses are lacking and the methods of the literature are either incompatible, very slow, very inaccurate, or bear a combination of the aforementioned deficiencies. To overcome this shortcoming, a novel symbolic-numeric method is presented in this paper that is able to obtain the analytical response of piecewise linear systems with discontinuous elements in an efficient manner. Contrary to other efficient methods that are based on stationary steady state dynamics, this method will not experience failure upon the occurrence of complex motion and is able to capture the entirety of the dynamics. 
    more » « less
  2. Computing systems are consuming an increasing and unsustainable fraction of society’s energy footprint, notably in data centers. Meanwhile, energy-efficient software engineering techniques are often absent from undergraduate curricula. We propose to develop a learning module for energy-efficient software, suitable for incorporation into an undergraduate software engineering class. There is one major problem with such an endeavor: undergraduate curricula have limited space for mastering energy-related systems programming aspects. To address this problem, we propose to leverage the domain expertise afforded by large language models (LLMs). In our preliminary studies, we observe that LLMs can generate energy-efficient variations of basic linear algebra codes tailored to both ARM64 and AMD64 architectures, as well as unit tests and energy measurement harnesses. On toy examples suitable for classroom use, this approach reduces energy expenditure by 30–90%. These initial experiences give rise to our vision of LLM-based metacompilers as a tool for students to transform high-level algorithms into efficient, hardware-specific implementations. Complementing this tooling, we will incorporate systems thinking concepts into the learning module so that students can reason both locally and globally about the effects of energy optimizations. 
    more » « less
  3. The optimal power flow (OPF) problem plays an important role in power system operation and control. The problem is nonconvex and NP-hard, hence global optimality is not guaranteed and the complexity grows exponentially with the size of the system. Therefore, centralized optimization techniques are not suitable for large-scale systems and an efficient decomposed implementation of OPF is highly demanded. In this paper, we propose a novel and efficient method to decompose the entire system into multiple sub-systems based on automatic regionalization and acquire the OPF solution across sub-systems via a modified MATPOWER solver. The proposed method is implemented in a modified solver and tested on several IEEE Power System Test Cases. The performance is shown to be more appealing compared with the original solver. 
    more » « less
  4. Abstract Simulating quantum systems in a finite volume is a powerful theoretical tool to extract information about them. Real-world properties of the system are encoded in how its discrete energy levels change with the size of the volume. This approach is relevant not only for nuclear physics, where lattice methods for few- and many-nucleon states complement phenomenological shell-model descriptions and ab initio calculations of atomic nuclei based on harmonic oscillator expansions, but also for other fields such as simulations of cold atomic systems. This contribution presents recent progress concerning finite-volume simulations of few-body systems. In particular, it discusses details regarding the efficient numerical implementation of separable interactions and it presents eigenvector continuation as a method for performing robust and efficient volume extrapolations. 
    more » « less
  5. Proton transfer is crucial in various chemical and biological processes. Because of significant nuclear quantum effects, accurate and efficient description of proton transfer remains a great challenge. In this Communication, we apply constrained nuclear–electronic orbital density functional theory (CNEO-DFT) and constrained nuclear–electronic orbital molecular dynamics (CNEO-MD) to three prototypical shared proton systems and investigate their proton transfer modes. We find that with a good description of nuclear quantum effects, CNEO-DFT and CNEO-MD can well describe the geometries and vibrational spectra of the shared proton systems. Such a good performance is in significant contrast to DFT and DFT-based ab initio molecular dynamics, which often fail for shared proton systems. As an efficient method based on classical simulations, CNEO-MD is promising for future investigations of larger and more complex proton transfer systems. 
    more » « less