skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 6, 2025

Title: A genomic resource for exploring bacterial-viral dynamics in seagrass ecosystems
Abstract BackgroundSeagrasses are globally distributed marine flowering plants that play foundational roles in coastal environments as ecosystem engineers. While research efforts have explored various aspects of seagrass-associated microbial communities, including describing the diversity of bacteria, fungi and microbial eukaryotes, little is known about viral diversity in these communities. ResultsTo begin to address this, we leveraged metagenomic sequencing data to generate a catalog of bacterial metagenome-assembled genomes (MAGs) and phage genomes from the leaves of the seagrass,Zostera marina. We expanded the robustness of this viral catalog by incorporating publicly available metagenomic data from seagrass ecosystems. The final MAG set represents 85 high-quality draft and 62 medium-quality draft bacterial genomes. While the viral catalog represents 354 medium-quality, high-quality, and complete viral genomes. Predicted auxiliary metabolic genes in the final viral catalog had putative annotations largely related to carbon utilization, suggesting a possible role for phage in carbon cycling in seagrass ecosystems. ConclusionsThese genomic resources provide initial insight into bacterial-viral interactions in seagrass meadows and are a foundation on which to further explore these critical interkingdom interactions. These catalogs highlight a possible role for viruses in carbon cycling in seagrass beds which may have important implications for blue carbon management and climate change mitigation.  more » « less
Award ID(s):
2205744
PAR ID:
10639795
Author(s) / Creator(s):
;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundRock-dwelling microorganisms are key players in ecosystem functioning of Antarctic ice free-areas. Yet, little is known about their diversity and ecology, and further still, viruses in these communities have been largely unexplored despite important roles related to host metabolism and nutrient cycling. To begin to address this, we present a large-scale viral catalog from Antarctic rock microbial communities. ResultsWe performed metagenomic analyses on rocks from across Antarctica representing a broad range of environmental and spatial conditions, and which resulted in a predicted viral catalog comprising > 75,000 viral operational taxonomic units (vOTUS). We found largely undescribed, highly diverse and spatially structured virus communities which had predicted auxiliary metabolic genes (AMGs) with functions indicating that they may be potentially influencing bacterial adaptation and biogeochemistry. ConclusionThis catalog lays the foundation for expanding knowledge of virosphere diversity, function, spatial ecology, and dynamics in extreme environments. This work serves as a step towards exploring adaptability of microbial communities in the face of a changing climate. 
    more » « less
  2. Abstract The introduction of high-throughput chromosome conformation capture (Hi-C) into metagenomics enables reconstructing high-quality metagenome-assembled genomes (MAGs) from microbial communities. Despite recent advances in recovering eukaryotic, bacterial, and archaeal genomes using Hi-C contact maps, few of Hi-C-based methods are designed to retrieve viral genomes. Here we introduce ViralCC, a publicly available tool to recover complete viral genomes and detect virus-host pairs using Hi-C data. Compared to other Hi-C-based methods, ViralCC leverages the virus-host proximity structure as a complementary information source for the Hi-C interactions. Using mock and real metagenomic Hi-C datasets from several different microbial ecosystems, including the human gut, cow fecal, and wastewater, we demonstrate that ViralCC outperforms existing Hi-C-based binning methods as well as state-of-the-art tools specifically dedicated to metagenomic viral binning. ViralCC can also reveal the taxonomic structure of viruses and virus-host pairs in microbial communities. When applied to a real wastewater metagenomic Hi-C dataset, ViralCC constructs a phage-host network, which is further validated using CRISPR spacer analyses. ViralCC is an open-source pipeline available athttps://github.com/dyxstat/ViralCC. 
    more » « less
  3. Abstract MotivationPhage–host associations play important roles in microbial communities. But in natural communities, as opposed to culture-based lab studies where phages are discovered and characterized metagenomically, their hosts are generally not known. Several programs have been developed for predicting which phage infects which host based on various sequence similarity measures or machine learning approaches. These are often based on whole viral and host genomes, but in metagenomics-based studies, we rarely have whole genomes but rather must rely on contigs that are sometimes as short as hundreds of bp long. Therefore, we need programs that predict hosts of phage contigs on the basis of these short contigs. Although most existing programs can be applied to metagenomic datasets for these predictions, their accuracies are generally low. Here, we develop ContigNet, a convolutional neural network-based model capable of predicting phage–host matches based on relatively short contigs, and compare it to previously published VirHostMatcher (VHM) and WIsH. ResultsOn the validation set, ContigNet achieves 72–85% area under the receiver operating characteristic curve (AUROC) scores, compared to the maximum of 68% by VHM or WIsH for contigs of lengths between 200 bps to 50 kbps. We also apply the model to the Metagenomic Gut Virus (MGV) catalogue, a dataset containing a wide range of draft genomes from metagenomic samples and achieve 60–70% AUROC scores compared to that of VHM and WIsH of 52%. Surprisingly, ContigNet can also be used to predict plasmid-host contig associations with high accuracy, indicating a similar genetic exchange between mobile genetic elements and their hosts. Availability and implementationThe source code of ContigNet and related datasets can be downloaded from https://github.com/tianqitang1/ContigNet. 
    more » « less
  4. Phage emit communication signals that inform their lytic and lysogenic life cycles. However, little is known regarding the abundance and diversity of the genes associated with phage communication systems in wastewater treatment microbial communities. This study focused on phage communities within two distinct biochemical wastewater environments, specifically aerobic membrane bioreactors (AeMBRs) and anaerobic membrane bioreactors (AnMBRs) exposed to varying antibiotic concentrations. Metagenomic data from the bench-scale systems were analyzed to explore phage phylogeny, life cycles, and genetic capacity for antimicrobial resistance and quorum sensing. Two dominant phage families, Schitoviridae and Peduoviridae, exhibited redox-dependent dynamics. Schitoviridae prevailed in anaerobic conditions, while Peduoviridae dominated in aerobic conditions. Notably, the abundance of lytic and lysogenic proteins varied across conditions, suggesting the coexistence of both life cycles. Furthermore, the presence of antibiotic resistance genes (ARGs) within viral contigs highlighted the potential for phage to transfer ARGs in AeMBRs. Finally, quorum sensing genes in the virome of AeMBRs indicated possible molecular signaling between phage and bacteria. Overall, this study provides insights into the dynamics of viral communities across varied redox conditions in MBRs. These findings shed light on phage life cycles, and auxiliary genetic capacity such as antibiotic resistance and bacterial quorum sensing within wastewater treatment microbial communities. 
    more » « less
  5. Abstract BackgroundWinter carbon loss in northern ecosystems is estimated to be greater than the average growing season carbon uptake and is primarily driven by microbial decomposers. Viruses modulate microbial carbon cycling via induced mortality and metabolic controls, but it is unknown whether viruses are active under winter conditions (anoxic and sub-freezing temperatures). ResultsWe used stable isotope probing (SIP) targeted metagenomics to reveal the genomic potential of active soil microbial populations under simulated winter conditions, with an emphasis on viruses and virus-host dynamics. Arctic peat soils from the Bonanza Creek Long-Term Ecological Research site in Alaska were incubated under sub-freezing anoxic conditions with H218O or natural abundance water for 184 and 370 days. We sequenced 23 SIP-metagenomes and measured carbon dioxide (CO2) efflux throughout the experiment. We identified 46 bacterial populations (spanning 9 phyla) and 243 viral populations that actively took up18O in soil and respired CO2throughout the incubation. Active bacterial populations represented only a small portion of the detected microbial community and were capable of fermentation and organic matter degradation. In contrast, active viral populations represented a large portion of the detected viral community and one third were linked to active bacterial populations. We identified 86 auxiliary metabolic genes and other environmentally relevant genes. The majority of these genes were carried by active viral populations and had diverse functions such as carbon utilization and scavenging that could provide their host with a fitness advantage for utilizing much-needed carbon sources or acquiring essential nutrients. ConclusionsOverall, there was a stark difference in the identity and function of the active bacterial and viral community compared to the unlabeled community that would have been overlooked with a non-targeted standard metagenomic analysis. Our results illustrate that substantial active virus-host interactions occur in sub-freezing anoxic conditions and highlight viruses as a major community-structuring agent that likely modulates carbon loss in peat soils during winter, which may be pivotal for understanding the future fate of arctic soils' vast carbon stocks. 
    more » « less