This paper presents the development of a novel control algorithm designed for tasks involving human-robot collaboration. By using an 8-DOF robotic arm, our approach aims to counteract human-induced uncertainties added to the robot's nominal trajectory. To address this challenge, we incorporate a variable within the regular Model Predictive Control (MPC) framework to account for human uncertainties, which are modeled as following a normal distribution with a non-zero mean and variance. Our solution involves formulating and solving an uncertainty-aware Discrete Algebraic Ricatti Equation (ua-DARE), which yields the optimal control law for all joints to mitigate the impact of these uncertainties. We validate our methodology through theoretical analysis, demonstrating the effectiveness of the ua-DARE in providing an optimal control strategy. Our approach is further validated through simulation experiments using a Fetch robot model, where the results highlight a significant improvement in performance over a baseline algorithm that does not consider human uncertainty while solving for optimal control law. 
                        more » 
                        « less   
                    This content will become publicly available on June 1, 2026
                            
                            DARC: Disturbance-Aware Redundant Control for Human–Robot Co-Transportation
                        
                    
    
            This paper introduces Disturbance-Aware Redundant Control (DARC), a control framework addressing the challenge of human–robot co-transportation under disturbances. Our method integrates a disturbance-aware Model Predictive Control (MPC) framework with a proactive pose optimization mechanism. The robotic system, comprising a mobile base and a manipulator arm, compensates for uncertain human behaviors and internal actuation noise through a two-step iterative process. At each planning horizon, a candidate set of feasible joint configurations is generated using a Conditional Variational Autoencoder (CVAE). From this set, one configuration is selected by minimizing an estimated control cost computed via a disturbance-aware Discrete Algebraic Riccati Equation (DARE), which also provides the optimal control inputs for both the mobile base and the manipulator arm. We derive the disturbance-aware DARE and validate DARC with simulated experiments with a Fetch robot. Evaluations across various trajectories and disturbance levels demonstrate that our proposed DARC framework outperforms baseline algorithms that lack disturbance modeling, pose optimization, or both. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2332210
- PAR ID:
- 10640034
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Electronics
- Volume:
- 14
- Issue:
- 12
- ISSN:
- 2079-9292
- Page Range / eLocation ID:
- 2480
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In this paper, an optimization-based dynamic modeling method is used for human-robot lifting motion prediction. The three-dimensional (3D) human arm model has 13 degrees of freedom (DOFs) and the 3D robotic arm (Sawyer robotic arm) has 10 DOFs. The human arm and robotic arm are built in Denavit-Hartenberg (DH) representation. In addition, the 3D box is modeled as a floating-base rigid body with 6 global DOFs. The interactions between human arm and box, and robot and box are modeled as a set of grasping forces which are treated as unknowns (design variables) in the optimization formulation. The inverse dynamic optimization is used to simulate the lifting motion where the summation of joint torque squares of human arm is minimized subjected to physical and task constraints. The design variables are control points of cubic B-splines of joint angle profiles of the human arm, robotic arm, and box, and the box grasping forces at each time point. A numerical example is simulated for huma-robot lifting with a 10 Kg box. The human and robotic arms’ joint angle, joint torque, and grasping force profiles are reported. These optimal outputs can be used as references to control the human-robot collaborative lifting task.more » « less
- 
            null (Ed.)This paper addresses the problem of autonomously deploying an unmanned aerial vehicle in non-trivial settings, by leveraging a manipulator arm mounted on a ground robot, acting as a versatile mobile launch platform. As real-world deployment scenarios for micro aerial vehicles such as searchand- rescue operations often entail exploration and navigation of challenging environments including uneven terrain, cluttered spaces, or even constrained openings and passageways, an often arising problem is that of ensuring a safe take-off location, or safely fitting through narrow openings while in flight. By facilitating launching from the manipulator end-effector, a 6- DoF controllable take-off pose within the arm workspace can be achieved, which allows to properly position and orient the aerial vehicle to initialize the autonomous flight portion of a mission. To accomplish this, we propose a sampling-based planner that respects a) the kinematic constraints of the ground robot / manipulator / aerial robot combination, b) the geometry of the environment as autonomously mapped by the ground robots perception systems, and c) accounts for the aerial robot expected dynamic motion during takeoff. The goal of the proposed planner is to ensure autonomous collision-free initialization of an aerial robotic exploration mission, even within a cluttered constrained environment. At the same time, the ground robot with the mounted manipulator can be used to appropriately position the take-off workspace into areas of interest, effectively acting as a carrier launch platform. We experimentally demonstrate this novel robotic capability through a sequence of experiments that encompass a micro aerial vehicle platform carried and launched from a 6-DoF manipulator arm mounted on a four-wheel robot base.more » « less
- 
            Using robots capable of collaboration with humans to complete physical tasks in unstructured spaces is a rapidly growing approach to work. Particular examples where increased levels of automation can increase productivity include robots used as nursing assistants. In this paper, we present a mobile manipulator designed to serve as an assistant to nurses in patient walking and patient sitting tasks in hospital environments. The Adaptive Robotic Nursing Assistant (ARNA) robot consists of an omnidirectional base with an instrumented handlebar, and a 7-DOF robotic arm. We describe its components and the novelties in its mechanisms and instrumentation. Experiments with human subjects that gauge the usability and ease of use of the ARNA robot in a medical environment indicate that the robot will get significant actual usage, and are used as a basis for a discussion on how the robot's features facilitate its adaptability for use in other scenarios and environment.more » « less
- 
            Abstract Silent speech interfaces offer an alternative and efficient communication modality for individuals with voice disorders and when the vocalized speech communication is compromised by noisy environments. Despite the recent progress in developing silent speech interfaces, these systems face several challenges that prevent their wide acceptance, such as bulkiness, obtrusiveness, and immobility. Herein, the material optimization, structural design, deep learning algorithm, and system integration of mechanically and visually unobtrusive silent speech interfaces are presented that can realize both speaker identification and speech content identification. Conformal, transparent, and self‐adhesive electromyography electrode arrays are designed for capturing speech‐relevant muscle activities. Temporal convolutional networks are employed for recognizing speakers and converting sensing signals into spoken content. The resulting silent speech interfaces achieve a 97.5% speaker classification accuracy and 91.5% keyword classification accuracy using four electrodes. The speech interface is further integrated with an optical hand‐tracking system and a robotic manipulator for human‐robot collaboration in both assembly and disassembly processes. The integrated system achieves the control of the robot manipulator by silent speech and facilitates the hand‐over process by hand motion trajectory detection. The developed framework enables natural robot control in noisy environments and lays the ground for collaborative human‐robot tasks involving multiple human operators.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
