Abstract This report is on the synthesis by electrospinning of multiferroic core-shell nanofibers of strontium hexaferrite and lead zirconate titanate or barium titanate and studies on magneto-electric (ME) coupling. Fibers with well-defined core–shell structures showed the order parameters in agreement with values for nanostructures. The strength of ME coupling measured by the magnetic field-induced polarization showed the fractional change in the remnant polarization as high as 21%. The ME voltage coefficient in H-assembled films showed the strong ME response for the zero magnetic bias field. Follow-up studies and potential avenues for enhancing the strength of ME coupling in the core–shell nanofibers are discussed.
more »
« less
Multiferroicity and Semi‐Cylindrical Alignment in Janus Nanofiber Aggregates
Abstract 1D multiferroic fibers are known to exhibit attractive characteristics, including enhanced magnetoelectric (ME) coupling compared to thin film and bulk architectures. A comprehensive understanding of composite fibers, however, has been hindered by the complexity of their structure, leading to limited reports. Here, clear and strong ME coupling is experimentally detected in a composite Janus nanofiber aggregate using second harmonic generation (SHG) polarimetry under different magnetic field orientations. The observation of such a pronounced effect using an all‐optical method has not been previously reported in multiferroic fibers. A series of global fits is performed to the SHG polarimetry results to investigate the behavior of nanofibers within an aggregate. We find the magnetically assembled fibers exhibit semi‐cylindrical alignment as well as the expected lengthwise alignment despite variations in size and composition from fiber to fiber. The ME coupling and the semi‐cylindrical alignment seen in SHG are further corroborated via X‐ray diffraction under similar magnetic field conditions. These findings contribute to the development of complex composite and multifunctional devices using multiferroic nanostructures as building blocks, even those with inhomogeneous shapes and geometries.
more »
« less
- Award ID(s):
- 1652720
- PAR ID:
- 10641031
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 35
- Issue:
- 2
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This report is on studies directed at the nature of magneto-electric (ME) coupling by ferromagnetic resonance (FMR) under an electric field in a coaxial nanofiber of nickel ferrite (NFO) and lead zirconate titanate (PZT). Fibers with ferrite cores and PZT shells were prepared by electrospinning. The core–shell structure of annealed fibers was confirmed by electron- and scanning probe microscopy. For studies on converse ME effects, i.e., the magnetic response of the fibers to an applied electric field, FMR measurements were done on a single fiber with a near-field scanning microwave microscope (NSMM) at 5–10 GHz by obtaining profiles of both amplitude and phase of the complex scattering parameterS11as a function of bias magnetic field. The strength of the voltage-ME couplingAvwas determined from the shift in the resonance fieldHrfor bias voltage ofV = 0–7 V applied to the fiber. The coefficientAvfor the NFO core/PZT shell structure was estimated to be − 1.92 kA/Vm (− 24 Oe/V). A model was developed for the converse ME effects in the fibers and the theoretical estimates are in good agreement with the data.more » « less
-
The magnetoelectric effect (ME) is an important strain mediated-phenomenon in a ferromagnetic-piezoelectric composite for a variety of sensors and signal processing devices. A bias magnetic field, in general, is essential to realize a strong ME coupling in most composites. Magnetic phases with (i) high magnetostriction for strong piezomagnetic coupling and (ii) large anisotropy field that acts as a built-in bias field are preferred so that miniature, ME composite-based devices can operate without the need for an external magnetic field. We are able to realize such a magnetic phase with a composite of (i) barium hexaferrite (BaM) with high magnetocrystalline anisotropy field and (ii) nickel ferrite (NFO) with high magnetostriction. The BNx composites, with (100 − x) wt.% of BaM and x wt.% NFO, for x = 0–100, were prepared. X-ray diffraction analysis shows that the composites did not contain any impurity phases. Scanning electron microscopy images revealed that, with an increase in NFO content, hexagonal BaM grains become prominent, leading to a large anisotropy field. The room temperature saturation magnetization showed a general increase with increasing BaM content in the composites. NFO rich composites with x ≥ 60 were found to have a large magnetostriction value of around −23 ppm, comparable to pure NFO. The anisotropy field HA of the composites, determined from magnetization and ferromagnetic resonance (FMR) measurements, increased with increasing NFO content and reached a maximum of 7.77 kOe for x = 75. The BNx composite was cut into rectangular platelets and bonded with PZT to form the bilayers. ME voltage coefficient (MEVC) measurements at low frequencies and at mechanical resonance showed strong coupling at zero bias for samples with x ≥ 33. This large in-plane HA acted as a built-in field for strong ME effects under zero external bias in the bilayers. The highest zero-bias MEVC of ~22 mV/cm Oe was obtained for BN75-PZT bilayers wherein BN75 also has the highest HA. The Bilayer of BN95-PZT showed a maximum MEVC ~992 mV/cm Oe at electromechanical resonance at 59 kHz. The use of hexaferrite–spinel ferrite composite to achieve strong zero-bias ME coupling in bilayers with PZT is significant for applications related to energy harvesting, sensors, and high frequency devices.more » « less
-
Abstract Electrical modulation of magnetic states in single-phase multiferroic materials, using domain-wall magnetoelectric (ME) coupling, can be enhanced substantially by controlling the population density of the ferroelectric (FE) domain walls during polarization switching. In this work, we investigate the domain-wall ME coupling in multiferroic h-YbFeO3thin films, in which the FE domain walls induce clamped antiferromagnetic (AFM) domain walls with reduced magnetization magnitude. Simulation according to the phenomenological theory indicates that the domain-wall ME effect is dramatically enhanced when the separation between the FE domain walls shrinks below the characteristic width of the clamped AFM domain walls during the ferroelectric switching. Experimentally, we show that while the magnetization magnitude remains same for both the positive and the negative saturation polarization states, there is evidence of magnetization reduction at the coercive voltages. These results suggest that the domain-wall ME effect is viable for electrical control of magnetization.more » « less
-
Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a key factor that determines the strength of magneto-electric (ME) coupling, is much higher than for bulk or thin-film composites. Core–shell nano- and microcomposites of the ferroic phases are the preferred structures, since they are free of any clamping due to substrates that are present in nanobilayers or nanopillars on a substrate. This review concerns recent efforts on ME coupling in coaxial fibers of spinel or hexagonal ferrites for the magnetic phase and PZT or barium titanate for the ferroelectric phase. Several recent studies on the synthesis and ME measurements of fibers with nickel ferrite, nickel zinc ferrite, or cobalt ferrite for the spinel ferrite and M-, Y-, and W-types for the hexagonal ferrites were considered. Fibers synthesized by electrospinning were found to be free of impurity phases and had uniform core and shell structures. Piezo force microscopy (PFM) and scanning microwave microscopy (SMM) measurements of strengths of direct and converse ME effects on individual fibers showed evidence for strong coupling. Results of low-frequency ME voltage coefficient and magneto-dielectric effects on 2D and 3D films of the fibers assembled in a magnetic field, however, were indicative of ME couplings that were weaker than in bulk or thick-film composites. A strong ME interaction was only evident from data on magnetic field-induced variations in the remnant ferroelectric polarization in the discs of the fibers. Follow-up efforts aimed at further enhancement in the strengths of ME coupling in core–shell composites are also discussed in this review.more » « less
An official website of the United States government
