Droplet nucleation and condensation are ubiquitous phenomena in nature and industry. Over the past century, research has shown dropwise condensation heat transfer on nonwetting surfaces to be an order of magnitude higher than filmwise condensation heat transfer on wetting substrates. However, the necessity for nonwetting to achieve dropwise condensation is unclear. This article reports stable dropwise condensation on a smooth, solid, hydrophilic surface (θ a = 38°) having low contact angle hysteresis (<3°). We show that the distribution of nano- to micro- to macroscale droplet sizes (about 100 nm to 1 mm) for coalescing droplets agrees well with the classical distribution on hydrophobic surfaces and elucidate that the wettability-governed dropwise-to-filmwise transition is mediated by the departing droplet Bond number. Our findings demonstrate that achieving stable dropwise condensation is not governed by surface intrinsic wettability, as assumed for the past eight decades, but rather, it is dictated by contact angle hysteresis.
more »
« less
Patterned Quasi‐Liquid Surfaces for Condensation of Low Surface Tension Fluids
Abstract Extensive research concerns dropwise condensation of low surface tension fluids to promote energy efficiency and decarbonization in thermal energy systems. However, it is challenging as these fluids typically result in filmwise condensation. Drawing inspiration from the Namib desert beetle that enhances condensation through patterned wettability, conventional beetle‐inspired surfaces excel in water condensation but flood when condensing low surface tension fluids. In this work, a patterned quasi‐liquid surface is reported that achieves exceptional dropwise condensation of low surface tension fluids. The surface consists of alternating stripes with low surface energy, that is, a perfluoropolyether (PFPE) and fluorinated quasi‐liquid surface (FQLS), that shows ultralow contact angle hysteresis for ethanol and hexane. The PFPE stripes are slightly more slippery, acting as slippery bridges that accelerate droplet coalescence and removal. It is experimentally demonstrated that the striped PFPE‐FQLS pattern exhibits a heat transfer coefficient 85%, 330%, and 550% higher than that of PFPE, fluorinated silane, and filmwise condensation, respectively. This study reveals that a high contact angle is desired to sustain dropwise condensation, irrespective of contact angle hysteresis. These findings provide a new paradigm for promoting the dropwise condensation of low surface tension fluids and offer valuable insights into surface design for energy sustainability.
more »
« less
- Award ID(s):
- 2044348
- PAR ID:
- 10641039
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 34
- Issue:
- 33
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Massive studies concern the development of low‐carbon water and energy systems. Specifically, surfaces with special wettability to promote vapor‐to‐liquid condensation have been widely studied, but current solutions suffer from poor heat transfer performances due to inefficient droplet removal. In this study, the limit of condensation on a beetle‐inspired biphilic quasi‐liquid surface (QLS) in a steam environment is pushed, which provides a heat flux 100 times higher than that in atmospheric condensation. Unlike the beetle‐inspired surfaces that have sticky hydrophilic domains, the biphilic QLS consists of PEGylated and siloxane polymers as hydrophilic and hydrophobic quasi‐liquid patterns with the contact angle hysteresis of 3° and 1°, respectively. More importantly, each hydrophilic slippery pattern behaves like a slippery bridge that accelerates droplet coalescence and removal. As a result, the condensed droplets grow rapidly and shed off. It is demonstrated that the biphilic‐striped QLS shows a 60% higher water harvesting rate in atmospheric condensation and a 170% higher heat transfer coefficient in steam condensation than the conventional beetle‐inspired surface. This study provides a new paradigm to push the limit of condensation heat transfer at a high heat flux, which sheds light on the next‐generation surface design for water and energy sustainability.more » « less
-
Dropwise condensation is well known to result in better heat transfer performance owing to efficient condensate/droplet removal, which can be harnessed in various industrial heat/mass transfer applications such as power generation and conversion, water harvesting/desalination, and electronics thermal management. The key to enhancing condensation via the dropwise mode is thin low surface energy coatings (<100 nm) with low contact angle hysteresis. Ultrathin (<5 nm) silane self assembled monolayers (or SAMs) have been widely studied to promote dropwise condensation due to their minimal thermal resistance and scalable integration processes. Such thin coatings typically degrade within an hour during condensation of water vapor. After coating failure, water vapor condensation transitions to the inefficient filmwise mode with poor heat transfer performance. We enhance silane SAM quality and durability during water vapor condensation on copper compared to state of the art silane coatings on metal surfaces. We achieve this via (i) surface polishing to sub-10 nm levels, (ii) pure oxygen plasma surface treatment, and (iii) silane coating integration with the copper substrate in an anhydrous/moisture-free environment. The resulting silane SAM has low contact angle hysteresis (≈20°) and promotes efficient dropwise condensation of water for >360 hours without any visible sign of coating failure/degradation in the absence of non condensable gases. We further demonstrate enhanced heat transfer performance (≈5 7× increase over filmwise condensation) over an extended period of time. Surface characterization data post-condensation leads us to propose that in the absence of non-condensable gases in the vapor environment, the silane SAM degrades due to reduction and subsequent dissolution of copper oxide at the oligomer-substrate interface. The experiments also indicate that the magnitude of surface subcooling (or condensation rate) affects the rate of coating degradation. This work identifies a pathway to durable dropwise promoter coatings that will enable efficient heat transfer in industrial applications.more » « less
-
Abstract Self‐propulsion of highly wetting liquids is important in heat exchanger, air conditioning, and refrigeration systems. However, it is challenging to achieve such a spontaneous motion as these liquids tend to wet all the surfaces due to their ultralow surface tensions. Despite that extensive asymmetric surface structures and gradient chemical coatings are developed for directional droplet transport, they will be flooded and covered by these liquids. Here, this challenge is addressed by creating a gradient quasi‐liquid surface to achieve the self‐propulsion of droplets with surface tensions down to 10.0 mN m−1. Such a surface engineered by tethering flexible polymers with gradient grafting density shows ultralow contact angle hysteresis (<1o) to highly wetting liquids. Thus, the surface can simultaneously provide sufficient driving forces through the gradient wettability and negligible retention forces through the slippery boundary lubrication for spontaneous droplet movement. Moreover, continual self‐propulsion of tiny droplets is achieved by spraying highly wetting liquids in simulated condensation conditions and demonstrates that adding temperature gradient can further accelerate the self‐propulsion. The study provides a new paradigm to promote passive removal of highly wetting droplets, leading to potential impacts in enhancing condensation heat transfer regardless of surface orientations.more » « less
-
Polyurethane is a common polymeric coating, providing abrasion resistance, chemical durability, and flexibility to surfaces in the biomedical, marine, and food processing industries with great promise for future materials due to its tunable chemistry. There exists a large body of research focused on modifying polyurethane with additional functionalities, such as antimicrobial, non-fouling, anticorrosive action, or high heat resistance. However, there remains a need for the characterization and surface analysis of fluoro-modified polyurethanes synthesized with commercially available fluorinated polyol. In this work, we have synthesized traditional solvent-borne polyurethane, conventionally found in food processing facilities, boat hulls, and floor coatings, with polyurethane containing 1%, 2%, and 3% perfluoropolyether (PFPE). Polyurethane formation was confirmed by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, with the urethane band forming at 1730 cm−1 and the absence of free isocyanate stretching from 2275–2250 cm−1. X-ray photoelectron spectroscopy (XPS) was used to confirm perfluoropolyether polymerization with an increase in the atomic percentage of fluorine. Wettability and hydrophobicity were determined using a dynamic water contact angle with significant differences in advancing the water contact angle with the inclusion of perfluoropolyether blocks (PU–co–1PFPE 131.5° ± 8.0, PU–co–2PFPE 130.9° ± 5.8, and PU–co–3PFPE 128.8° ± 5.2) compared to the control polyurethane (93.6° ± 3.6). The surface orientation of fluorine supported the reduced critical surface tensions of polyurethane modified with PFPE (12.54 mN m−1 for PU–co–3PFPE compared to 17.19 mN m−1 for unmodified polyurethane). This work has demonstrated the tunable chemical qualities of polyurethane by presenting its ability to incorporate fluoropolymer surface characteristics, including low critical surface tension and high hydrophobicity.more » « less
An official website of the United States government
