Boom-bust population dynamics are long-recognized phenomena during species invasions, but few studies documented impacts of these dynamic changes. The Florida Everglades is the largest wetland in the United States, is undergoing a multi-decade hydro-restoration effort, and has been invaded by several tropical freshwater fishes. We used a 26-year dataset of small native marsh fishes and decapods to assess potential effects of African Jewelfish (Hemichromis letourneuxi) invasion and compared their effects to those of a more recently invading species, Asian Swamp Eels (Monopterus albus/javanensis), and a long-established non-native species, Mayan Cichlids (Mayaheros urophthalmus). Unlike boom-bust dynamics of jewelfish, swamp eel abundance increased and stabilized over the course of this study. After accounting for effects of hydrologic variation, the densities of several native species were more reduced by either jewelfish or swamp eels than by native fish predators, while effects of Mayan Cichlids were similar to those of native fish predators. Impacts of the jewelfish boom in Shark River Slough were smaller (density reductions ≤ 50%) and more temporally limited than those of swamp eels, which produced near-complete loss of four species in Taylor Slough. Following the jewelfish bust, the density of affected species approximated pre-invasion predictions based on hydrology, but their recovery is now threatened by the subsequent invasion of swamp eels in Shark River Slough. Long-term monitoring data provide opportunities to probe for population-level effects at field scales, and indicate that impacts of non-native species can be context-dependent and vary across ecosystems and temporal scales.
more »
« less
This content will become publicly available on May 1, 2026
Trophic disruption by an invasive species linked to altered energy fluxes
Abstract The Trophic Disruption Hypothesis (TDH) predicts that invasive species may cause native species to undergo trophic dispersion (change in trophic‐niche area) and trophic displacement (diet switching), predictably altering food‐web structure and biodiversity. In Everglades National Park, Florida, USA, African Jewelfish (Rubricatochromis letourneuxi) density has recently (2012–2017) undergone a boom‐bust cycle, linked to declines of native taxa and altered aquatic‐community composition that persist after the bust. Everglades restoration efforts seek to restore historic hydrologic conditions that may contribute to food‐web changes unfolding coincidentally with the jewelfish boom. We used complementary datasets of stomach contents and stable isotopes (δ15N and δ13C) to quantify pre‐ and post‐invasion consumer diets, trophic positions, trophic niches, basal energy use (autotrophic vs. heterotrophic), and energy fluxes to test assumptions of the TDH. The direction of change for these metrics from dry season to wet‐season post‐invasion (i.e., effect of adding water) was used as a proxy for the direction of effects from restored water delivery. For trophic shifts attributable to jewelfish invasion, we tested assumptions of the TDH. Comparing pre‐ versus post‐invasion for native consumers, we observed trophic displacement in 42% of species size classes (based on stomach contents), trophic dispersion for 57% of species (based on stable isotopes) and 54% of species size classes (based on stomach contents), and overall greater reliance on autotrophic energy. Altered trophic dynamics were more frequent pre‐ versus post‐invasion than among habitats or between seasons, and the direction of those responses was in the opposite direction of dry‐season to wet‐season differences and/or occurred at a higher frequency. Post‐invasion food‐web structure and function revealed increased relative abundance of mesopredators (including African Jewelfish) and reduced biomass and energy fluxes into and out of small fishes (e.g., Cyprinodontiformes). Our results show that African Jewelfish invasion is linked to altered spatiotemporal trophic dynamics and energy fluxes through declines in native fishes and invertebrates, which indirectly affected trophic relationships at the regional scale in the Everglades. As a result, we suggest extending the TDH to explicitly include the potential for invasive species to alter basal energy use, spatiotemporal trophic dynamics, and energy fluxes.
more »
« less
- PAR ID:
- 10643688
- Publisher / Repository:
- Wiley Periodicals LLC
- Date Published:
- Journal Name:
- Ecosphere
- Volume:
- 16
- Issue:
- 5
- ISSN:
- 2150-8925
- Subject(s) / Keyword(s):
- diet ecosystem function hierarchy of hypotheses non-native species stable isotopes stomach contents trophic niche trophic position
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Irruptive or boom-and-bust population dynamics, also known as ‘outbreaks’, are an important phenomenon that has been noted in biological invasions at least since Charles Elton’s classic book was published in 1958. Community-level consequences of irruptive dynamics are poorly documented and invasive species provide excellent systems for their study. African Jewelfish (Rubricatochromis letourneuxi, “jewelfish”) are omnivores that demonstrate opportunistic carnivory, first reported in Florida in the 1960s and in Everglades National Park (ENP) in 2000. Twelve years after invasion in ENP, jewelfish underwent a 25-fold increase in density in one year. By 2016, jewelfish represented 25–50% of fish biomass. Using a 43-year fish community dataset at two sites (1978–2021), and a 25-year dataset of fish and invertebrate communities from the same drainage (1996–2021), with additional spatial coverage, we quantified differences in fish and invertebrate communities during different phases of invasion. During jewelfish boom, abundant, native cyprinodontiform fishes decreased in density and drove changes in community structure as measured by similarity of relativized abundance. Density of two species declined by > 70%, while four declined by 50–62%. Following the jewelfish bust, some species recovered to pre-boom densities while others did not. Diversity of recovery times produced altered community structure that lagged for at least four years after the jewelfish population declined. Community structure is an index of ecological functions such as resilience, productivity, and species interaction webs; therefore, these results demonstrate that irruptive population dynamics can alter ecological functions of ecosystems mediated by community structure for years following that population’s decline.more » « less
-
{"Abstract":["Stomach contents of fishes (1977-1981) and stable isotopes of fishes, invertebrates, and basal resources (1994) were collected from spikerush marsh, sawgrass ridge, and alligator pond habitats in Shark River Slough, Everglades National Park, Florida, USA. These data were used to quantify diet, trophic niche area, trophic position, basal resource use and how these metrics vary among size classes, seasons, and habitats. Data collection is complete. These data support Flood et al. (2023). Associated R code will be made available through Peter Flood's GitHub: https://github.com/pjflood/historic_everglades_aquatic_food_web. \n References:\n Flood, Peter J., William F. Loftus, and Joel C. Trexler. "Fishes in a seasonally pulsed wetland show spatiotemporal shifts in diet and trophic niche but not shifts in trophic position." Food Webs 34 (2023): e00265. https://doi.org/10.1016/j.fooweb.2022.e00265"]}more » « less
-
Abstract Ecosystem engineering is a facilitative interaction that generates bottom‐up extrinsic variability that may increase species coexistence, particularly along a stress/disturbance gradient. American alligators (Alligator mississippiensis) create and maintain ‘alligator ponds’ that serve as dry‐season refuges for other animals. During seasonal water recession, these ponds present an opportunity to examine predictions of the stress‐gradient (SGH) and intermediate disturbance hypotheses (IDH).To test the assumption that engineering would facilitate species coexistence in ponds along a stress gradient (seasonal drying), we modelled fish catch‐per‐unit‐effort (CPUE) in ponds and marshes using a long‐term dataset (1997–2022). Stomach contents (n = 1677 from 46 species) and stable isotopes of carbon and nitrogen (n = 3978 representing 91 taxa) from 2018 to 2019 were used to evaluate effects of engineering on trophic dynamics. We quantified diets, trophic niche areas, trophic positions and basal‐resource use among habitats and between seasons. As environmental stress increases, we used seasonal changes in trophic niche areas as a proxy for competition to examine SGH and IDH.Across long‐term data, fish CPUE increased by a factor of 12 in alligator ponds as the marsh dried. This validates the assumption that ponds are an important dry‐season refuge. We found that 73% of diet shifts occurred during the dry season but that diets differed among habitats in only 11% of comparisons. From wet season to dry season, both stomach contents and stable isotopes revealed changes in niche areas. Direction of change depended on trophic guild but was opposite between stable‐isotope and stomach‐content niches, except for detritivores.Stomach‐content niches generally increased suggesting decreased competition in the dry season consistent with existing theory, but stable‐isotope niches yielded the opposite. This may result from a temporal mismatch with stomach contents reflecting diets over hours, while stable isotopes integrate diet over weeks. Consumptive effects may have a stronger effect than competition on niche areas over longer time intervals.Overall, our results demonstrated that alligators ameliorated dry‐season stress by engineering deep‐water habitats and altering food‐web dynamics. We propose that ecosystem engineers facilitate coexistence at intermediate values of stress/disturbance consistent with predictions of both the SGH and IDH.more » « less
-
Mercury (Hg) biomagnification in aquatic food webs is a global concern; yet, the ways species traits and interactions mediate these fluxes remain poorly understood. Few pathways dominated Hg flux in the Colorado River despite large spatial differences in food web complexity, and fluxes were mediated by one functional trait, predation resistance. New Zealand mudsnails are predator resistant and a trophic dead end for Hg in food webs we studied. Fishes preferred blackflies, which accounted for 56 to 80% of Hg flux to fishes, even where blackflies were rare. Food web properties, i.e., match/mismatch between insect production and fish consumption, governed amounts of Hg retained in the river versus exported to land. An experimental flood redistributed Hg fluxes in the simplified tailwater food web, but not in complex downstream food webs. Recognizing that species traits, species interactions, and disturbance mediate contaminant exposure can improve risk management of linked aquatic-terrestrial ecosystems.more » « less
An official website of the United States government
