skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Worldwide Soundscapes: A Synthesis of Passive Acoustic Monitoring Across Realms
The urgency for remote, reliable and scalable biodiversity monitoring amidst mounting human pressures on ecosystems has sparked worldwide interest in Passive Acoustic Monitoring (PAM), which can track life underwater and on land. However, we lack a unified methodology to report this sampling effort and a comprehensive overview of PAM coverage to gauge its potential as a global research and monitoring tool. To address this gap, we created the Worldwide Soundscapes project, a collaborative network and growing database comprising metadata from 416 datasets across all realms (terrestrial, marine, freshwater and subterranean).  more » « less
Award ID(s):
2025755 2322350 2024077
PAR ID:
10644580
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
34
Issue:
5
ISSN:
1466-822X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As a species that lives at the land/water interface, the American bullfrog (Rana catesbeianus) serve as a bioindicator in many habitats, yet also invasive in many locations. Due to challenges with traditional monitoring approaches, there is a lack of fine-scale population and phenological data for bullfrogs. Passive acoustic monitoring (PAM) can provide a low-cost alternative with high-resolution data for monitoring vocal animals. Sexually mature male bullfrogs attract mates by calling from exclusive territories. These vocalizations can be used to explore bullfrog behavior, population size, and phenology. We describe the analysis framework and initial results from an project monitoring the vocal behavior of frogs in 25 ponds in southeastern New Hampshire during the reproductive season using acoustic arrays. By using an acoustic energy index (RMS amplitude), we can estimate numbers of frogs in ponds, determine timing of reproduction, and even document anthropogenic disturbance. Our results can lead to future uses of PAM to monitor population size and phenology and develop reliable long-term management and conservation strategies. 
    more » « less
  2. Adélie penguins (Pygoscelis adeliae) are bioindicators for the rapidly changing Antarctic environment, making understanding their population dynamics and behavior of high research priority. However, collecting detailed population data throughout the breeding season on many colonies is difficult due to Antarctica’s harsh conditions and remote location. The colonial breeding ecology of Adélie penguins has led to the evolution of a highly vocal species with individualized calls, making them well-suited for passive acoustic monitoring (PAM) with autonomous recording. PAM units can potentially provide an easily deployable and scalable way to collect fine-scale data on population estimates and breeding phenology. Here I present a framework for using acoustic indices to monitor phenology of dense penguin colonies even under high wind conditions. I evaluate the relationship between acoustic indices such as RMS amplitude and penguin colony size between distinct breeding stages (incubation, guard, crèche, and fledge) on Torgersen and Humble Islands in the West Antarctic Peninsula with an automated pipeline implemented in R. Using PAM to interpret penguin vocalizations for population size and breeding phenology estimates could lead to the development of a real-time remote monitoring system over a large spatial footprint, revealing Adélie penguin responses to climate change. 
    more » « less
  3. null (Ed.)
    We developed a new coarse-grained (CG) molecular dynamics force field for polyacrylamide (PAM) polymer based on fitting to the quantum mechanics (QM) equation of state (EOS). In this method, all nonbond interactions between representative beads are parameterized using a series of QM-EOS, which significantly improves the accuracy in comparison to common CG methods derived from atomistic molecular dynamics. This CG force-field has both higher accuracy and improved computational efficiency with respect to the OPLS atomistic force field. The nonbond components of the EOS were obtained from cold-compression curves on PAM crystals with rigid chains, while the covalent terms that contribute to the EOS were obtained using relaxed chains. For describing PAM gels we developed water–PAM interaction parameters using the same method. We demonstrate that the new CG-PAM force field reproduces the EOS of PAM crystals, isolated PAM chains, and water–PAM systems, while successfully predicting such experimental quantities as density, specific heat capacity, thermal conductivity and melting point. 
    more » « less
  4. Passive acoustic monitoring (PAM) is a powerful tool for ecological research, but recordings can be compromised by background noise such as wind. Addressing wind noise (e.g., clipping and masking) in bioacoustic data remains a challenge, especially as climate change is predicted to increase wind speeds, particularly near the poles. Adélie penguins (Pygoscelis adeliae), key indicators of the Antarctic ecosystem, are well-suited for PAM, where large-scale monitoring could assess climate-driven population changes—if wind noise is managed effectively. In this study, the convolutional neural network, BirdNET, inversely identifies unwanted sounds in Adélie penguin colony recordings. Multiple custom models were developed in which the background nontarget noise was Adélie vocalizations, and wind conditions (low, medium, and high) were the target classes. The best-performing model achieved an F-score of 0.43 and accuracy of 0.53. The high wind class within this model had a precision of 0.76 and recall of 0.94. A six-step workflow is presented for creating custom BirdNET models, evaluating their performance and determining an optimal confidence threshold prior to model application on an entire dataset. By automating unwanted sound detection, this approach enables researchers to efficiently identify and remove affected files, streamline data cleaning, and focus on recordings of interest for further analysis. 
    more » « less
  5. Photonic network-on-chip (PNoC) architectures employ photonic links with dense wavelength-division multiplexing (DWDM) to enable high throughput on-chip transfers. Unfortunately, increasing the DWDM degree (i.e., using a larger number of wavelengths) to achieve a higher aggregated data rate in photonic links and, hence, higher throughput in PNoCs, requires sophisticated and costly laser sources along with extra photonic hardware. This extra hardware can introduce undesired noise to the photonic link and increase the bit error rate (BER), power, and area consumption of PNoCs. To mitigate these issues, the use of 4-pulse amplitude modulation (4-PAM) signaling, instead of the conventional on-off keying (OOK) signaling, can halve the wavelength signals utilized in photonic links for achieving the target aggregate data rate while reducing the overhead of crosstalk noise, BER, and photonic hardware. There are various designs of 4-PAM modulators reported in the literature. For example, the signal superposition (SS)–, electrical digital-to-analog converter (EDAC)–, and optical digital-to-analog converter (ODAC)–based designs of 4-PAM modulators have been reported. However, it is yet to be explored how these SS-, EDAC-, and ODAC-based 4-PAM modulators can be utilized to design DWDM-based photonic links and PNoC architectures. In this article, we provide a systematic analysis of the SS, EDAC, and ODAC types of 4-PAM modulators from prior work with regards to their applicability and utilization overheads. We then present a heuristic-based search method to employ these 4-PAM modulators for designing DWDM-based SS, EDAC, and ODAC types of 4-PAM photonic links with two different design goals: (i) to attain the desired BER of 10 -9 at the expense of higher optical power and lower aggregate data rate and (ii) to attain maximum aggregate data rate with the desired BER of 10 -9 at the expense of longer packet transfer latency. We then employ our designed 4-PAM SS–, 4-PAM EDAC–, 4-PAM ODAC–, and conventional OOK modulator–based photonic links to constitute corresponding variants of the well-known CLOS and SWIFT PNoC architectures. We eventually compare our designed SS-, EDAC-, and ODAC-based variants of 4-PAM links and PNoCs with the conventional OOK links and PNoCs in terms of performance and energy efficiency in the presence of inter-channel crosstalk. From our link-level and PNoC-level evaluation, we have observed that the 4-PAM EDAC–based variants of photonic links and PNoCs exhibit better performance and energy efficiency compared with the OOK-, 4-PAM SS–, and 4-PAM ODAC–based links and PNoCs. 
    more » « less