Cyberbullying is a well-known social issue, and it is escalating day by day. Due to the vigorous development of the internet, social media provide many different ways for the user to express their opinions and exchange information. Cyberbullying occurs on social media using text messages, comments, sharing images and GIFs or stickers, and audio and video. Much research has been done to detect cyberbullying on textual data; some are available for images. Very few studies are available to detect cyberbullying on GIFs/stickers. We collect a GIF dataset from Twitter and Applied a deep learning model to detect cyberbullying from the dataset. Firstly, we extracted hashtags related to cyberbullying using Twitter. We used these hashtags to download GIF file using publicly available API GIPHY. We collected over 4100 GIFs including cyberbullying and non-cyberbullying. we applied deep learning pre-trained model VGG16 for the detection of the cyberbullying. The deep learning model achieved the accuracy of 97%. Our work provides the GIF dataset for researchers working in this area.
more »
« less
This content will become publicly available on September 25, 2026
AI can be cyberbullying perpetrators: Investigating individuals’ perceptions and attitudes towards AI-generated cyberbullying
More Like this
-
-
Social media platforms and online gaming sites play a pervasive role in facilitating peer interaction and social development for adolescents, but they also pose potential threats to health and safety. It is crucial to tackle cyberbullying issues within these platforms to ensure the healthy social development of adolescents. Cyberbullying has been linked to adverse mental health outcomes among adolescents, including anxiety, depression, academic underperformance, and an increased risk of suicide. While cyberbullying is a concern for all adolescents, those with disabilities are particularly susceptible and face a higher risk of being targets of cyberbullying. Our research addresses these challenges by introducing a personalized online virtual companion guided by artificial intelligence (AI). The web-based virtual companion’s interactions aim to assist adolescents in detecting cyberbullying. More specifically, an adolescent with ASD watches a cyberbullying scenario in a virtual environment, and the AI virtual companion then asks the adolescent if he/she detected cyberbullying. To inform the virtual companion in real time to know if the adolescent has learned about detecting cyberbullying, we have implemented fast and lightweight cyberbullying detection models employing the T5-small and MobileBERT networks. Our experimental results show that we obtain comparable results to the state-of-the-art methods despite having a compact architecture.more » « less
-
Social media continues to have an impact on the trajectory of humanity. However, its introduction has also weaponized keyboards, allowing the abusive language normally reserved for in-person bullying to jump onto the screen, i.e., cyberbullying. Cyberbullying poses a significant threat to adolescents globally, affecting the mental health and well-being of many. A group that is particularly at risk is the LGBTQ+ community, as researchers have uncovered a strong correlation between identifying as LGBTQ+ and suffering from greater online harassment. Therefore, it is critical to develop machine learning models that can accurately discern cyberbullying incidents as they happen to LGBTQ+ members. The aim of this study is to compare the efficacy of several transformer models in identifying cyberbullying targeting LGBTQ+ individuals. We seek to determine the relative merits and demerits of these existing methods in addressing complex and subtle kinds of cyberbullying by assessing their effectiveness with real social media data.more » « less
-
Cyberbullying has become one of the most pressing online risks for adolescents and has raised serious concerns in society. Traditional efforts are primarily devoted to building a single generic classification model for all users to differentiate bullying behaviors from the normal content [6, 3, 1, 2, 4]. Despite its empirical success, these models treat users equally and inevitably ignore the idiosyncrasies of users. Recent studies from psychology and sociology suggest that the occurrence of cyberbullying has a strong connection with the personality of victims and bullies embedded in the user-generated content, and the peer influence from like-minded users. In this paper, we propose a personalized cyberbullying detection framework PI-Bully with peer influence in a collaborative environment to tailor the prediction for each individual. In particular, the personalized classifier of each individual consists of three components: a global model that captures the commonality shared by all users, a personalized model that expresses the idiosyncratic personality of each specific user, and a third component that encodes the peer influence received from like-minded users. Most of the existing methods adopt a two-stage approach: they first apply feature engineering to capture the cyberbullying patterns and then employ machine learning classifiers to detect cyberbullying behaviors. However, building a personalized cyberbullying detection framework that is customized to each individual remains a challenging task, in large part because: (1) Social media data is often sparse, noisy and high-dimensional (2) It is important to capture the commonality shared by all users as well as idiosyncratic aspects of the personality of each individual for automatic cyberbullying detection; (3) In reality, a potential victim of cyberbullying is often influenced by peers and the influences from different users could be quite diverse. Hence, it is imperative to develop a way to encode the diversity of peer influence for cyberbullying detection. To summarize, we study a novel problem of personalized cyberbullying detection with peer influence in a collaborative environment, which is able to jointly model users' common features, unique personalities and peer influence to identify cyberbullying cases.more » « less
-
null (Ed.)Cyberbullying, identified as intended and repeated online bullying behavior, has become increasingly prevalent in the past few decades. Despite the significant progress made thus far, the focus of most existing work on cyberbullying detection lies in the independent content analysis of different comments within a social media session. We argue that such leading notions of analysis suffer from three key limitations: they overlook the temporal correlations among different comments; they only consider the content within a single comment rather than the topic coherence across comments; they remain generic and exploit limited interactions between social media users. In this work, we observe that user comments in the same session may be inherently related, e.g., discussing similar topics, and their interaction may evolve over time. We also show that modeling such topic coherence and temporal interaction are critical to capture the repetitive characteristics of bullying behavior, thus leading to better predicting performance. To achieve the goal, we first construct a unified temporal graph for each social media session. Drawing on recent advances in graph neural network, we then propose a principled graph-based approach for modeling the temporal dynamics and topic coherence throughout user interactions. We empirically evaluate the effectiveness of our approach with the tasks of session-level bullying detection and comment-level case study. Our code is released to public.more » « less
An official website of the United States government
