skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Waveform Effects on Shear Wave Splitting Near Fault Zones
Shear wave splitting of teleseismic core phases such as SKS is commonly used to constrain mantle seismic anisotropy, a proxy for convective deformation. In plate boundaries, sharp lateral variations of splitting measurements near transform faults are often linked to deformation within a lithospheric shear zone below, but potential seismic waveform effects from heterogeneous structure on small scales may influence the interpretation. Here, we explore possible finite frequency effects on shear wave splitting near fault zones in a fully three‐dimensional anisotropic setting. We find that shear zones wider than 80 km, a scale set by the Fresnel zone, can be clearly detected, but narrower zones are less distinguishable. Near the edge of the shear zone, the combined effect of anisotropy and scattering generates false splitting measurements with large delay times and fast axis orientation approaching the back‐azimuth, a bias which can only be identified when records from different back‐azimuths are analyzed together. This substantiates that back‐azimuthal variations of splitting can arise not just from vertical layering but also lateral changes of anisotropic media. We also test the effects of shear zone edge geometry, epicentral distance, filtering frequency, crustal thickness, and sediment cover. Our study delineates the ability of shear wave splitting to resolve and investigate fault zones, and emphasizes the importance of good azimuthal coverage to correctly interpret observed anisotropy. Based on revisiting previous shear wave splitting and lithospheric deformation studies, we infer that many crustal fault zones are underlain by lithospheric shear zones at least 20 km wide.  more » « less
Award ID(s):
1927246 2051243 2049743
PAR ID:
10646150
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
130
Issue:
8
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To discern spatial and explore possible existence of temporal variations of upper crustal anisotropy in an ∼15 km section of the San Jacinto Fault Zone (SJFZ) that is composed of the Buck Ridge and Clark faults in southern California, we conduct a systematic shear wave splitting investigation using local S‐wave data recorded by three broadband seismic stations located near the surface expression of the SJFZ. An automatic data selection and splitting measurement procedure is first applied, and the resulting splitting measurements are then manually screened to ensure reliability of the results. Strong spatial variations in crustal anisotropy are revealed by 1,694 pairs of splitting parameters (fast polarization orientation and splitting delay time), as reflected by the dependence of the resulting splitting parameters on the location and geometry of the raypaths. For raypaths traveling through the fault zones, the fast orientations are dominantly WNW‐ESE which is parallel to the faults and may be attributed to fluid‐filled fractures in the fault zones. For non‐fault‐zone crossing raypaths, the fast orientations are dominantly N–S which are consistent with the orientation of the regional maximum compressive stress. A three‐dimensional model of upper crustal anisotropy is constructed based on the observations. An increase in the raypath length normalized splitting times is observed after the 03/11/2013 M4.7 earthquake, which is probably attributable to changes in the spatial distribution of earthquakes before and after the M4.7 earthquake rather than reflecting temporal changes of upper crustal anisotropy. 
    more » « less
  2. During the early Paleozoic the terranes of Ganderia and Avalonia both rifted from Gondwana. They accreted to North America in the middle Paleozoic. The late Silurian-Devonian Acadian orogeny, as a result of accretion of Avalonia, originated folding, high-grade metamorphism and northwest-dipping shear zones within the Nashoba-Putnam terrane, the trailing edge of Ganderia. In addition, partial melting produced plutonic rocks in and to the northwest of the Nashoba terrane. These characteristics have previously been interpreted as a result of channel flow and ductile extrusion towards the southeast. In this study, we apply geologically informed seismic imaging to test the hypothesis of the potential occurrence of crustal flow in the tectonic history of the Appalachian orogeny. Such crustal flow is suggested to produce significant seismic anisotropy due to the alignment of minerals within the weakened crust of the flow zone. This anisotropy would result in a characteristic set of effects to the seismic wavefield, such as the splitting of shear-waves, directionally dependent travel-times of seismic phases and directionally varying conversions at boundaries of anisotropic domains. Such effects yield a harmonic pattern that can be best observed in receiver function imaging. We systematically analyze the coherent harmonic patterns in receiver functions along a new dense (~5 km spacing) seismic profile, known as the GENESIS array, that complements existing stations across the Nashoba terrane in Eastern Massachusetts. We identify harmonic signals in the upper and mid-crust and within the lithospheric mantle, suggesting differing mid-crustal anisotropy between two lateral blocks, which correlate well with Avalonia and Ganderia. While we don’t directly identify the contact zone of the two terranes in our imaging, the changes of structural and anisotropic patterns may be consistent with a northwest-dipping suture zone, which is based on geologic observations. 
    more » « less
  3. Abstract Seismic anisotropy beneath eastern North America, as expressed in shear wave splitting observations, has been attributed to plate motion‐parallel shear in the asthenosphere, resulting in fast axes aligned with the plate motion. However, deviations of fast axes from plate motion directions are observed near major tectonic boundaries of the Appalachians, indicating contributions from lithospheric anisotropy associated with past tectonic processes. In this study, we conduct anisotropic receiver function (RF) analysis using data from a dense seismic array traversing the New England Appalachians in Connecticut to examine anisotropic layers in the crust and upper mantle and correlate them with past tectonic processes as well as present‐day mantle flow. We use the harmonic decomposition method to separate directionally‐dependent variations of RFs and focus on features with the same harmonic signals observed across multiple stations. Within the crust, there are multiple features that may be correlated with stratification in the Hartford Basin, faults in the Taconic thrust belt, shear zones formed during Salinic/Acadian terrane accretion events, and orogen‐parallel crustal flow in the Acadian orogenic plateau. We apply a Bayesian inversion method to obtain quantitative constraints on the direction and strength of intra‐crustal anisotropy beneath the Hartford Basin. In the upper mantle, we identify a fossil shear zone possibly formed during oblique subduction of Rheic Ocean lithosphere. We also find evidence for a plate motion‐parallel flow zone in the asthenosphere that is likely disturbed by mantle upwelling near the southern margin of the Northern Appalachian Anomaly in the eastern part of the study area. 
    more » « less
  4. SUMMARY The Earth's mantle transition zone (MTZ) plays a key role in the thermal and compositional interactions between the upper and lower mantle. Seismic anisotropy provides useful information about mantle deformation and dynamics across the MTZ. However, seismic anisotropy in the MTZ is difficult to constrain from surface wave or shear wave splitting measurements. Here, we investigate the sensitivity to anisotropy of a body wave method, SS precursors, through 3-D synthetic modelling and apply it to real data. Our study shows that the SS precursors can distinguish the anisotropy originating from three depths: shallow upper mantle (80–220 km), deep upper mantle above 410 km, and MTZ (410–660 km). Synthetic resolution tests indicate that SS precursors can resolve $$\ge $$3 per cent azimuthal anisotropy where data have an average signal-to-noise ratio (SNR = 7) and sufficient azimuthal coverage. To investigate regional sensitivity, we apply the stacking and inversion methods to two densely sampled areas: the Japan subduction zone and a central Pacific region around the Hawaiian hotspot. We find evidence for significant VS anisotropy (15.3 ± 9.2 per cent) with a trench-perpendicular fast direction (93° ± 5°) in the MTZ near the Japan subduction zone. We attribute the azimuthal anisotropy to the grain-scale shape-preferred orientation of basaltic materials induced by the shear deformation within the subducting slab beneath NE China. In the central Pacific study region, there is a non-detection of MTZ anisotropy, although modelling suggests the data coverage should allow us to resolve at least 3 per cent anisotropy. Therefore, the Hawaiian mantle plume has not produced detectable azimuthal anisotropy in the MTZ. 
    more » « less
  5. Abstract To systematically investigate seismic azimuthal anisotropy in the Sumatra subduction zone and probe mantle dynamics associated with the subduction of the Australian Plate beneath the Sunda Plate, a total of 169 pairs of teleseismic XKS (including PKS, SKKS, SKS) and 115 pairs of localSsplitting parameters are obtained using broadband seismic data recorded at ~70 stations. Additionally, crustal anisotropy in the overriding Sunda Plate is measured by analyzing the moveout ofP‐to‐Sconversions from the Moho using a sinusoidal function. Comparison between the three sets of anisotropy measurements obtained using shear waves with different depths of origin suggests that (1) the crust of the Sunda Plate is anisotropic with mostly trench‐parallel fast orientations and a mean splitting time of 0.28 ± 0.05 s; (2) the mantle wedge is azimuthally anisotropic with dominantly trench‐parallel fast orientations and splitting times ranging from 0.22 to 0.81 s, which generally increase with the focal depth; and (3) subslab anisotropy is mostly trench‐normal beneath the fore‐arc region with an averaged splitting time of 1.48 ± 0.06 s, and becomes trench‐parallel beneath the arc and back‐arc areas with a mean splitting time of 0.33 ± 0.04 s. The resulting lateral and vertical distributions of anisotropy obtained using splitting of three types of shear waves advocate the presence of an entrained subslab flow that is deflected by the mantle transition zone. The flow enters the mantle wedge through a slab window and flows horizontally parallel to the trench. 
    more » « less