Abstract Reservoirs are designed and operated to mitigate hydroclimatic variability and extremes to fulfill various beneficial purposes. Existing reservoir infrastructure capacity and operation policies derived from historical records are challenged by hydrologic regime change and storage reduction from sedimentation. Furthermore, climate change could amplify the water footprint of reservoir operation (i.e. non-beneficial evaporative loss), further influencing the complex interactions among hydrologic variability, reservoir characteristics, and operation decisions. Disentangling and quantifying these impacts is essential to assess the effectiveness of reservoir operation under future climate and identify the opportunities for adaptive reservoir management (e.g. storage reallocation). Using reservoirs in Texas as a testing case, this study develops data-driven models to represent the current reservoir operation policies and assesses the challenges and opportunities in flood control and water supply under dynamically downscaled climate projections from the Coupled Model Intercomparison Project Phase 6. We find that current policies are robust in reducing future flood risks by eliminating small floods, reducing peak magnitude, and extending the duration for large floods. Current operation strategies can effectively reduce the risk of storage shortage for many reservoirs investigated, but reservoir evaporation and sedimentation pose urgent needs for revisions in the current guidelines to enhance system resilience. We also identify the opportunities for reservoir storage reallocation through seasonal-varying conservation pool levels to improve water supply reliability with negligible flood risk increase. This study provides a framework for stakeholders to evaluate the effectiveness of the current reservoir operation policy under future climate through the interactions among hydroclimatology, reservoir infrastructure, and operation policy.
more »
« less
This content will become publicly available on October 1, 2026
A Data-Driven Framework for Flood Mitigation: Transformer-Based Damage Prediction and Reinforcement Learning for Reservoir Operations
Floods are among the most destructive natural hazards, with damages expected to intensify under climate change and socio-economic pressures. Effective reservoir operation remains a critical yet challenging strategy for mitigating downstream impacts, as operators must navigate nonlinear system dynamics, uncertain inflow forecasts, and trade-offs between competing objectives. This study proposes a novel end-to-end data-driven framework that integrates process-based hydraulic simulations, a Transformer-based surrogate model for flood damage prediction, and reinforcement learning (RL) for reservoir gate operation optimization. The framework is demonstrated using the Coralville Reservoir (Iowa, USA) and two major historical flood events (2008 and 2013). Hydraulic and impact simulations with HEC-RAS and HEC-FIA were used to generate training data, enabling the development of a Transformer model that accurately predicts time-varying flood damages. This surrogate is coupled with a Transformer-enhanced Deep Q-Network (DQN) to derive adaptive gate operation strategies. Results show that the RL-derived optimal policy reduces both peak and time-integrated damages compared to expert and zero-opening benchmarks, while maintaining smooth and feasible operations. Comparative analysis with a genetic algorithm (GA) highlights the robustness of the RL framework, particularly its ability to generalize across uncertain inflows and varying initial storage conditions. Importantly, the adaptive RL policy trained on perturbed synthetic inflows transferred effectively to the hydrologically distinct 2013 event, and fine-tuning achieved near-identical performance to the event-specific optimal policy. These findings highlight the capability of the proposed framework to provide adaptive, transferable, and computationally efficient tools for flood-resilient reservoir operation.
more »
« less
- Award ID(s):
- 2226936
- PAR ID:
- 10646463
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Water
- Volume:
- 17
- Issue:
- 20
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 3024
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Unprecedented floods from extreme rainfall events worldwide emphasize the need for flood inundation mapping for floodplain management and risk reduction. Access to flood inundation maps and risk evaluation tools remains challenging in most parts of the world, particularly in rural regions, leading to decreased flood resilience. The use of hydraulic and hydrodynamic models in rural areas has been hindered by excessive data and computational requirements. In this study, we mapped the flood inundation in Huron Creek watershed, Michigan, USA for an extreme rainfall event (1000-year return period) that occurred in 2018 (Father’s Day Flood) using the Height Above Nearest Drainage (HAND) model and a synthetic rating curve developed from LIDAR DEM. We compared the flood inundation extent and depth modeled by the HAND with flood inundation characteristics predicted by two hydrodynamic models, viz., HEC-RAS 2D and SMS-SRH 2D. The flood discharge of the event was simulated using the HEC-HMS hydrologic model. Results suggest that, in different channel segments, the HAND model produces different degrees of concurrence in both flood inundation extent and depth when compared to the hydrodynamic models. The differences in flood inundation characteristics produced by the HAND model are primarily due to the uncertainties associated with optimal parameter estimation of the synthetic rating curve. Analyzing the differences between the HAND and hydrodynamic models also highlights the significance of terrain characteristics in model predictions. Based on the comparable predictive capability of the HAND model to map flood inundation areas during extreme rainfall events, we demonstrate the suitability of the HAND-based approach for mitigating flood risk in data-scarce, rural regions.more » « less
-
Abstract Optimizing charging protocols is critical for reducing battery charging time and decelerating battery degradation in applications such as electric vehicles. Recently, reinforcement learning (RL) methods have been adopted for such purposes. However, RL‐based methods may not ensure system (safety) constraints, which can cause irreversible damages to batteries and reduce their lifetime. To this end, this article proposes an adaptive and safe RL framework to optimize fast charging strategies while respecting safety constraints with a high probability. In our method, any unsafe action that the RL agent decides will be projected into a safety region by solving a constrained optimization problem. The safety region is constructed using adaptive Gaussian process (GP) models, consisting of static and dynamic GPs, that learn from online experience to adaptively account for any changes in battery dynamics. Simulation results show that our method can charge the batteries rapidly with constraint satisfaction under varying operating conditions.more » « less
-
null (Ed.)We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem. This allows us to draw upon the simplicity and scalability of the Transformer architecture, and associated advances in language modeling such as GPT-x and BERT. In particular, we present Decision Transformer, an architecture that casts the problem of RL as conditional sequence modeling. Unlike prior approaches to RL that fit value functions or compute policy gradients, Decision Transformer simply outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired return (reward), past states, and actions, our Decision Transformer model can generate future actions that achieve the desired return. Despite its simplicity, Decision Transformer matches or exceeds the performance of state-of-the-art model-free offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.more » « less
-
In offline reinforcement learning (RL), the goal is to learn a highly rewarding policy based solely on a dataset of historical interactions with the environment. This serves as an extreme test for an agent's ability to effectively use historical data which is known to be critical for efficient RL. Prior work in offline RL has been confined almost exclusively to model-free RL approaches. In this work, we present MOReL, an algorithmic framework for model-based offline RL. This framework consists of two steps: (a) learning a pessimistic MDP using the offline dataset; (b) learning a near-optimal policy in this pessimistic MDP. The design of the pessimistic MDP is such that for any policy, the performance in the real environment is approximately lower-bounded by the performance in the pessimistic MDP. This enables the pessimistic MDP to serve as a good surrogate for purposes of policy evaluation and learning. Theoretically, we show that MOReL is minimax optimal (up to log factors) for offline RL. Empirically, MOReL matches or exceeds state-of-the-art results on widely used offline RL benchmarks. Overall, the modular design of MOReL enables translating advances in its components (for e.g., in model learning, planning etc.) to improvements in offline RL.more » « less
An official website of the United States government
