skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanical fatigue in microtubules
Mechanical failure of biological nanostructures due to sustained force application has been studied in great detail. In contrast, fatigue failure arising from repeated application of subcritical stresses has received little attention despite its prominent role in engineering and potentially biology. Here, paclitaxel-stabilized microtubules are up to 256 times bent into sinusoidal shapes of varying wavelength and the frequency of breaking events are observed. These experiments allow the calculation of fatigue life parameters for microtubules. Repeated buckling due to 12.5% compression–equal to the compression level experienced by microtubules in contracting cardiomyocytes – results in failure after in average 5 million cycles, whereas at 20.0% compression failure occurs after in average one thousand cycles. The fatigue strength (Basquin) exponent B is estimated as − 0.054±0.009.  more » « less
Award ID(s):
2230116
PAR ID:
10646548
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Page Range / eLocation ID:
26336
Subject(s) / Keyword(s):
Fatigue failure, Fatigue strength exponent, Microtubule, Tubulin, Mechanobiology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The newly developed FeMnAlNiTi shape memory alloy (SMA) holds significant promise due to its desirable properties including ease of processing, room temperature superelasticity, a wide superelastic window of operation, and high transformation stress levels. In this study, we report single crystals with tensile axis near h123i exhibiting transformation strains of 9% with a high trans- formation stress of 700 MPa. The functional performance revealed excellent recovery of 98% of the applied strain in an incremental strain test for each of the 40 applied cycles. Concomitantly, the total residual strain increased after each cycle. Accumulation of residual martensite is observed possibly due to pinning of austenite/martensite (A/M) interface. Subsequently, under structural fatigue loading with a constant strain amplitude of 1%, the recoverable strains saturate around 1.15% in local residual martensite domains. Intermittent enhancement of recoverable strains is observed due to transformation triggered in previously untransformed domains. Eventually, fatigue failure occur- red after 2046 cycles and the dominant mechanism for failure was microcrack initiation and coalescence along the A/M interface. Thus, it is concluded that interfacial dislo- cations, which play a crucial role in the superelastic (SE) functionality, invariably affect the structural fatigue per- formance by acting as the weakest link in the microstructure. 
    more » « less
  2. Bistable composite laminates have large-scale applications in morphing and energy-harvesting structures, but their fatigue performance remains largely unexplored. This study investigates the stiffness and damage progression and evaluates bistable performance to develop protocols for long-term applications. We analyze the effects of displacement-controlled fully reversible high cycle fatigue-loading on stiffness, damage, curvature, and snap-through load in the out-of-plane loading direction at eight different combinations of parameters with frequency from 1 to 10 Hz, two boundary conditions, and temperature from 22°C to 150°C up to 3 to 10 million cycles. Stiffness and damage evolution analysis demonstrate the first two stages in out-of-plane fatigue loading. The study proposes a damage definition in terms of load adapting with two fatigue damage models: (1) Shiri Model and (2) Wu Model, while both models exhibit reasonable accuracy in predicting damage for the first two stages despite deviating at the final cycle due to assuming this cycle as the final failure cycle. Of the two models, the Shiri model provided a smaller range of model parameter values, 0.22 and 0.43, for parameters p and q, respectively, which reflects adjustability to different test conditions by maintaining a moderate range. Specimens encountered no final failure by fiber breakage and did not lose bistability for any combination. Curvature and snap-through load measurements have not substantially changed due to fatigue loading. These findings confirm application protocols with a broad range of parameters for which the laminates can operate without significant fatigue damage and maintain their bistable performance for an infinite lifetime. 
    more » « less
  3. This work uses in situ nonlinear ultrasound measurements to study the relationship between the acoustic nonlinearity parameter β and the low cycle fatigue behavior of stainless steel 316L. The measured β shows a rapid decrease during hardening followed by a transition to a slower decrease in β as a function of fatigue cycles. Measurements show this trend is consistent at two different strain amplitudes. By comparing our results with prior work on dislocation characterizations in the same material, we hypothesize that the transition in slopes of β coincides with the planar-to-wavy transition that occurs at the end of hardening. Further, measurement results show that the parameter Δβt-c, the difference between β measured after the tension and compression portions of the fatigue cycle, depends on strain amplitude. The dependence of Δβt-c on strain amplitude is related to fatigue life through a power law relationship, similar to slip irreversibility. Overall, the results provided in this work suggest that β correlates with characteristics of low cycle fatigue, and thus supports the idea that in situ NLU measurements can eventually be used as a quantitative measure to predict fatigue life. 
    more » « less
  4. The effects of build orientation on the fatigue behavior of additively-manufactured Ti-6Al- 4V using a Laser-Based Power Bed Fusion (L-PBF) process is investigated. Ti-6Al-4V rods were manufactured in vertical, horizontal, and 45º angle orientations. The specimens were then machined and polished along the gage section in order to reduce the effects of surface roughness on fatigue behavior. Fully-reversed strain-controlled uniaxial fatigue tests were performed at various strain amplitudes with frequencies adjusted to maintain an average constant strain rate throughout testing. Results indicate slight variation in fatigue behavior of specimens fabricated in the different orientations investigated. Fractography was conducted using scanning electron microscopy after mechanical testing in order to investigate the crack initiation sites and determine the defect responsible for the failure. The experimental program utilized and results obtained will be presented and discussed. 
    more » « less
  5. A fundamental challenge for lightweight architected materials is their propensity for localized failure due to layered buckling, plastic shear-banding or fracture. Recent research efforts have used disorder to interrupt localization and enhance deformation, but most design strategies simply distribute the accumulation of damage, they do not prevent it from developing and propagating. This work explores how gradient architecture can be designed to hinder crack propagation and promote recoverability in nanostructured ceramic metamaterials. We experimentally and numerically investigated five different shell-based spinodal ceramic nanoarchitectures with 10-80 nm thick alumina films. These were fabricated using atomic layer deposition on sacrificial polymeric scaffolds written using two-photon lithography. All thin-walled (<40 nm) architectures underwent shell buckling-dominated deformation and showed nearly full recovery after compression to 45% strain, an expected result for this class of nanoarchitected materials. Thick-walled (>40 nm) isotropic and anisotropic architectures experienced considerable local damage during compression and predictably showed permanent failure even at low strains. Unexpectedly, thick-walled conch-shell inspired gradient architectures showed localized damage but experienced a full recovery after compression to 45% strain. This degree of recoverability has never been observed in this high density of a nanostructured ceramic, particularly one with visible local cracking during compression. This result stems from the length scale of the structural heterogeneity - the gradient layers were sufficiently small so as to inhibit the local damage development needed for crack propagation, thereby preventing catastrophic failure. Our findings have significant implications for how length scales and heterogeneity can be used to design failure-resistant materials from brittle constituents. 
    more » « less