skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Approximability of 𝓁₂² Min-Sum Clustering
The 𝓁₂² min-sum k-clustering problem is to partition an input set into clusters C_1,…,C_k to minimize ∑_{i=1}^k ∑_{p,q ∈ C_i} ‖p-q‖₂². Although 𝓁₂² min-sum k-clustering is NP-hard, it is not known whether it is NP-hard to approximate 𝓁₂² min-sum k-clustering beyond a certain factor. In this paper, we give the first hardness-of-approximation result for the 𝓁₂² min-sum k-clustering problem. We show that it is NP-hard to approximate the objective to a factor better than 1.056 and moreover, assuming a balanced variant of the Johnson Coverage Hypothesis, it is NP-hard to approximate the objective to a factor better than 1.327. We then complement our hardness result by giving a fast PTAS for 𝓁₂² min-sum k-clustering. Specifically, our algorithm runs in time O(n^{1+o(1)}d⋅ 2^{(k/ε)^O(1)}), which is the first nearly linear time algorithm for this problem. We also consider a learning-augmented setting, where the algorithm has access to an oracle that outputs a label i ∈ [k] for input point, thereby implicitly partitioning the input dataset into k clusters that induce an approximately optimal solution, up to some amount of adversarial error α ∈ [0,1/2). We give a polynomial-time algorithm that outputs a (1+γα)/(1-α)²-approximation to 𝓁₂² min-sum k-clustering, for a fixed constant γ > 0.  more » « less
Award ID(s):
2443697
PAR ID:
10646612
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Aichholzer, Oswin; Wang, Haitao
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
332
ISSN:
1868-8969
Page Range / eLocation ID:
62:1-62:18
Subject(s) / Keyword(s):
Clustering hardness of approximation polynomial-time approximation schemes learning-augmented algorithms Theory of computation → Computational geometry Theory of computation → Facility location and clustering
Format(s):
Medium: X Size: 18 pages; 1010695 bytes Other: application/pdf
Size(s):
18 pages 1010695 bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. Bansal, Nikhil and (Ed.)
    his paper presents universal algorithms for clustering problems, including the widely studied k-median, k-means, and k-center objectives. The input is a metric space containing all potential client locations. The algorithm must select k cluster centers such that they are a good solution for any subset of clients that actually realize. Specifically, we aim for low regret, defined as the maximum over all subsets of the difference between the cost of the algorithm’s solution and that of an optimal solution. A universal algorithm’s solution sol for a clustering problem is said to be an (α, β)-approximation if for all subsets of clients C', it satisfies sol(C') ≤ α ⋅ opt(C') + β ⋅ mr, where opt(C') is the cost of the optimal solution for clients C' and mr is the minimum regret achievable by any solution. Our main results are universal algorithms for the standard clustering objectives of k-median, k-means, and k-center that achieve (O(1), O(1))-approximations. These results are obtained via a novel framework for universal algorithms using linear programming (LP) relaxations. These results generalize to other 𝓁_p-objectives and the setting where some subset of the clients are fixed. We also give hardness results showing that (α, β)-approximation is NP-hard if α or β is at most a certain constant, even for the widely studied special case of Euclidean metric spaces. This shows that in some sense, (O(1), O(1))-approximation is the strongest type of guarantee obtainable for universal clustering. 
    more » « less
  2. Bae, Sang Won; Park, Heejin (Ed.)
    We consider the problem of solving the Min-Sum Submodular Cover problem using local search. The Min-Sum Submodular Cover problem generalizes the NP-complete Min-Sum Set Cover problem, replacing the input set cover instance with a monotone submodular set function. A simple greedy algorithm achieves an approximation factor of 4, which is tight unless P=NP [Streeter and Golovin, NeurIPS, 2008]. We complement the greedy algorithm with analysis of a local search algorithm. Building on work of Munagala et al. [ICDT, 2005], we show that, using simple initialization, a straightforward local search algorithm achieves a (4+ε)-approximate solution in time O(n³log(n/ε)), provided that the monotone submodular set function is also second-order supermodular. Second-order supermodularity has been shown to hold for a number of submodular functions of practical interest, including functions associated with set cover, matching, and facility location. We present experiments on two special cases of Min-Sum Submodular Cover and find that the local search algorithm can outperform the greedy algorithm on small data sets. 
    more » « less
  3. Ahn, Hee-Kap; Sadakane, Kunihiko (Ed.)
    In the standard planar k-center clustering problem, one is given a set P of n points in the plane, and the goal is to select k center points, so as to minimize the maximum distance over points in P to their nearest center. Here we initiate the systematic study of the clustering with neighborhoods problem, which generalizes the k-center problem to allow the covered objects to be a set of general disjoint convex objects C rather than just a point set P. For this problem we first show that there is a PTAS for approximating the number of centers. Specifically, if r_opt is the optimal radius for k centers, then in n^O(1/ε²) time we can produce a set of (1+ε)k centers with radius ≤ r_opt. If instead one considers the standard goal of approximating the optimal clustering radius, while keeping k as a hard constraint, we show that the radius cannot be approximated within any factor in polynomial time unless P = NP, even when C is a set of line segments. When C is a set of unit disks we show the problem is hard to approximate within a factor of (√{13}-√3)(2-√3) ≈ 6.99. This hardness result complements our main result, where we show that when the objects are disks, of possibly differing radii, there is a (5+2√3)≈ 8.46 approximation algorithm. Additionally, for unit disks we give an O(n log k)+(k/ε)^O(k) time (1+ε)-approximation to the optimal radius, that is, an FPTAS for constant k whose running time depends only linearly on n. Finally, we show that the one dimensional version of the problem, even when intersections are allowed, can be solved exactly in O(n log n) time. 
    more » « less
  4. Bojańczyk, Mikołaj; Merelli, Emanuela; Woodruff, David P (Ed.)
    Given n points in 𝓁_p^d, we consider the problem of partitioning points into k clusters with associated centers. The cost of a clustering is the sum of p-th powers of distances of points to their cluster centers. For p ∈ [1,2], we design sketches of size poly(log(nd),k,1/ε) such that the cost of the optimal clustering can be estimated to within factor 1+ε, despite the fact that the compressed representation does not contain enough information to recover the cluster centers or the partition into clusters. This leads to a streaming algorithm for estimating the clustering cost with space poly(log(nd),k,1/ε). We also obtain a distributed memory algorithm, where the n points are arbitrarily partitioned amongst m machines, each of which sends information to a central party who then computes an approximation of the clustering cost. Prior to this work, no such streaming or distributed-memory algorithm was known with sublinear dependence on d for p ∈ [1,2). 
    more » « less
  5. This article presentsuniversalalgorithms for clustering problems, including the widely studiedk-median,k-means, andk-center objectives. The input is a metric space containing allpotentialclient locations. The algorithm must selectkcluster centers such that they are a good solution foranysubset of clients that actually realize. Specifically, we aim for lowregret, defined as the maximum over all subsets of the difference between the cost of the algorithm’s solution and that of an optimal solution. A universal algorithm’s solutionSolfor a clustering problem is said to be an α , β-approximation if for all subsets of clientsC, it satisfiessol(C) ≤ α ċopt(C′) + β ċmr, whereopt(C′ is the cost of the optimal solution for clients (C′) andmris the minimum regret achievable by any solution. Our main results are universal algorithms for the standard clustering objectives ofk-median,k-means, andk-center that achieve (O(1),O(1))-approximations. These results are obtained via a novel framework for universal algorithms using linear programming (LP) relaxations. These results generalize to other ℓp-objectives and the setting where some subset of the clients arefixed. We also give hardness results showing that (α, β)-approximation is NP-hard if α or β is at most a certain constant, even for the widely studied special case of Euclidean metric spaces. This shows that in some sense, (O(1),O(1))-approximation is the strongest type of guarantee obtainable for universal clustering. 
    more » « less