skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 6, 2026

Title: Fractal signatures of hydraulic head variations reveal aquifer heterogeneity
Understanding subsurface heterogeneity is critical for predicting groundwater flow, pollutant transport, and managing water resources. While traditional methods often rely on sparse borehole or geophysical data, this study explores a spectral analysis approach to infer aquifer structure from groundwater level fluctuations. We use a coupled surface–subsurface flow model to simulate hydraulic head time series in synthetic aquifers with bimodal hydraulic conductivity distributions. The frequency characteristics of these head fluctuations are analyzed to compute the scaling exponent (defined as the slope of the log-power spectral density of head fluctuations versus log-frequency) and its spatial gradient magnitude. Results show that areas with significant heterogeneity, such as transitions between high- and low-permeability zones, exhibit strong spatial gradients in the scaling exponent. These features can be used to delineate unsaturated zones, groundwater flow systems, and aquifer heterogeneity. By testing four scenarios with different hydraulic conductivity contrasts, we demonstrate that this method is sensitive to aquifer configuration. Our findings suggest that the gradient magnitude of the scaling exponent may serve as a diagnostic tool for characterizing heterogeneity in groundwater models and has the potential for future applications in estimating permeability distributions from monitored groundwater level data.  more » « less
Award ID(s):
2500969
PAR ID:
10648034
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of hydrology
ISSN:
0022-1694
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The hydrology of alpine and subalpine areas in the Colorado Front Range (USA) is evolving, driven by warming and by the alteration of precipitation patterns, the timing of snowmelt, and other components of the hydrologic budget. Field measurements of soil hydraulic conductivity and moisture along 30-m transects (n = 13) of representative soils developed in surficial deposits and falling head slug tests of shallow groundwater in till demonstrate that hydraulic conductivity in the soil is comparable to hydraulic conductivity values in the shallow aquifer. Soil hydraulic conductivity values were variable (medians ranged from 5.6 × 10−7 to 4.96 × 10−5 m s−1) and increased in alpine areas underlain by periglacial deposits. Hydraulic conductivities measured by a modified Hvorslev technique in test wells ranged from 4.86 × 10−7 to 1.77 × 10−4 m s−1 in subalpine till. The results suggest a gradient from higher hydraulic conductivity in alpine zones, where short travel paths through periglacial deposits support ephemeral streams and wetlands, to lower hydraulic conductivity in the till-mantled subalpine zone. In drier downstream areas, streambed infiltration contributes substantially to near-channel groundwater. As summer temperatures and evapotranspiration (ET) increase and snowmelt occur earlier, alpine soils are likely to become more vulnerable to drought, and groundwater levels in the critical zone may lower, affecting the connectivity between late-melting snow, meltwater streams, and the areas they affect downstream. 
    more » « less
  2. Abstract Groundwater discharge is an important mechanism through which fresh water and associated solutes are delivered to the ocean. Permafrost environments have traditionally been considered hydrogeologically inactive, yet with accelerated climate change and permafrost thaw, groundwater flow paths are activating and opening subsurface connections to the coastal zone. While warming has the potential to increase land-sea connectivity, sea-level change has the potential to alter land-sea hydraulic gradients and enhance coastal permafrost thaw, resulting in a complex interplay that will govern future groundwater discharge dynamics along Arctic coastlines. Here, we use a recently developed permafrost hydrological model that simulates variable-density groundwater flow and salinity-dependent freeze-thaw to investigate the impacts of sea-level change and land and ocean warming on the magnitude, spatial distribution, and salinity of coastal groundwater discharge. Results project both an increase and decrease in discharge with climate change depending on the rate of warming and sea-level change. Under high warming and low sea-level rise scenarios, results show up to a 58% increase in coastal groundwater discharge by 2100 due to the formation of a supra-permafrost aquifer that enhances freshwater delivery to the coastal zone. With higher rates of sea-level rise, the increase in discharge due to warming is reduced to 21% as sea-level rise decreased land-sea hydraulic gradients. Under lower warming scenarios for which supra-permafrost groundwater flow was not established, discharge decreased by up to 26% between 1980 and 2100 for high sea-level rise scenarios and increased only 8% under low sea-level rise scenarios. Thus, regions with higher warming rates and lower rates of sea-level change (e.g. northern Nunavut, Canada) will experience a greater increase in discharge than regions with lower warming rates and higher rates of sea-level change. The magnitude, location and salinity of discharge have important implications for ecosystem function, water quality, and carbon dynamics in coastal zones. 
    more » « less
  3. Abstract Groundwater discharge transports dissolved constituents to the ocean, affecting coastal carbon budgets and water quality. However, the magnitude and mechanisms of groundwater exchange along rapidly transitioning Arctic coastlines are largely unknown due to limited observations. Here, using first-of-its-kind coastal Arctic groundwater timeseries data, we evaluate the magnitude and drivers of groundwater discharge to Alaska’s Beaufort Sea coast. Darcy flux calculations reveal temporally variable groundwater fluxes, ranging from −6.5 cm d−1(recharge) to 14.1 cm d−1(discharge), with fluctuations in groundwater discharge or aquifer recharge over diurnal and multiday timescales during the open-water season. The average flux during the monitoring period of 4.9 cm d−1is in line with previous estimates, but the maximum discharge exceeds previous estimates by over an order-of-magnitude. While the diurnal fluctuations are small due to the microtidal conditions, multiday variability is large and drives sustained periods of aquifer recharge and groundwater discharge. Results show that wind-driven lagoon water level changes are the dominant mechanism of fluctuations in land–sea hydraulic head gradients and, in turn, groundwater discharge. Given the microtidal conditions, low topographic relief, and limited rainfall along the Beaufort Sea coast, we identify wind as an important forcing mechanism of coastal groundwater discharge and aquifer recharge with implications for nearshore biogeochemistry. This study provides insights into groundwater flux dynamics along this coastline over time and highlights an oft overlooked discharge and circulation mechanism with implications towards refining solute export estimates to coastal Arctic waters. 
    more » « less
  4. Abstract Groundwater flow direction within the critical zone of headwater catchments is often assumed to mimic land surface topographic gradients. However, groundwater hydraulic gradients are also influenced by subsurface permeability contrasts, which can result in variability in flow direction and magnitude. In this study, we investigated the relationship between shallow groundwater flow direction, surface topography, and the subsurface topography of low permeability units in a headwater catchment at the Hubbard Brook Experimental Forest (HBEF), NH. We continuously monitored shallow groundwater levels in the solum throughout several seasons in a well network (20 wells of 0.18–1.1 m depth) within the upper hillslopes of Watershed 3 of the HBEF. Water levels were also monitored in four deeper wells, screened from 2.4 to 6.9 m depth within glacial drift of the C horizon. We conducted slug tests across the well network to determine the saturated hydraulic conductivity (Ksat) of the materials surrounding each well. Results showed that under higher water table regimes, groundwater flow direction mimics surface topography, but under lower water table regimes, flow direction can deviate as much as 56 degrees from surface topography. Under these lower water table conditions, groundwater flow direction instead followed the topography of the top of the C horizon. The interquartile range ofKsatwithin the C horizon was two orders of magnitude lower than within the solum. Overall, our results suggest that the land surface topography and the top of the C horizon acted as end members defining the upper and lower bounds of flow direction variability. This suggests that temporal dynamics of groundwater flow direction should be considered when calculating hydrologic fluxes in critical zone and runoff generation studies of headwater catchments that are underlain by glacial drift. 
    more » « less
  5. Groundwater-surface water interaction (hyporheic exchange) is critical in numerous hydrogeochemical processes; however, hyporheic exchange is difficult to characterize due to the various spatial (e.g., sedimentary architecture) and temporal (e.g., stage fluctuations) variables that influence it. This interdisciplinary study brings forth novel insights by integrating various methodologies including geophysical surveys, physical and chemical sediment characterization, and water chemistry analysis to explore the interplay of the numerous facets governing hyporheic zone processes within a compound bar deposit. The findings reveal distinct sedimentary facies and geochemical zones within the compound bar, driven by the sedimentary architecture. Cross-bar channel fills are identified as critical structures influencing hydrogeochemical dynamics, acting as baffles to groundwater flow and modulating nutrient transformations. Geophysical imaging and hydrogeochemical analyses highlight the complex interplay between sediment characteristics and subsurface hydraulic connectivity, emphasizing the role of sediment heterogeneity in controlling hyporheic exchange and solute mixing. The study concludes that sediment heterogeneity, particularly the presence of cross-bar channel fills, plays a pivotal role in the hydrogeochemical dynamics of the hyporheic zone. These structures significantly influence hyporheic flow paths, solute residence times, and nutrient cycling, underscoring the necessity to consider the fine-scale sedimentary architecture in models of hyporheic exchange. The findings contribute to a deeper understanding of riverine ecosystem processes, offering insights that can inform management strategies for water quality and ecological integrity. 
    more » « less