skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 20, 2026

Title: Towards Smart Manufacturing Metaverse via Digital Twinning in Extended Reality
The rapid evolution of modern manufacturing systems is driven by the integration of emerging metaverse technologies such as artificial intelligence (AI), digital twin (DT), and different forms of extended reality (XR) like virtual reality (VR), augmented reality (AR), and mixed reality (MR). These advances confront manufacturing workers with complex and evolving environments that demand digital literacy for problem solving in the future workplace. However, manufacturing industry faces a critical shortage of skilled workforce with digital literacy in the world. Further, global pandemic has significantly changed how people work and collaborate digitally and remotely. There is an urgent need to rethink digital platformization and leverage emerging technologies to propel industrial evolution toward human-centered manufacturing metaverse (MfgVerse). This paper presents a forward-looking perspective on the development of MfgVerse, highlighting current efforts in learning factory, cognitive digital twinning, and the new sharing economy of manufacturing-as-a-service (MaaS). MfgVerse is converging into multiplex networks, including a social network of human stakeholders, an interconnected network of manufacturing things or agents (e.g., machines, robots, facilities, material handling systems), a network of digital twins of physical things, as well as auxiliary networks of sales, supply chain, logistics, and remanufacturing systems. We also showcase the design and development of a virtual learning factory for workforce training. Finally, future directions, challenges, and opportunities are discussed for human-centered manufacturing metaverse. We hope this work helps stimulate more comprehensive studies and in-depth research efforts to advance MfgVerse technologies.  more » « less
Award ID(s):
2531899 2302834
PAR ID:
10648573
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
Journal of Computing and Information Science in Engineering
ISSN:
1530-9827
Page Range / eLocation ID:
1 to 18
Subject(s) / Keyword(s):
Cybermanufacturing Smart Manufacturing Human Computer Interfaces/Interactions Digital Twin Virtual and Augmented Reality Environments
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Over the past two decades, the use of Metaverse-enhanced simulations in medical education has witnessed significant advancement. These simulations offer immersive environments and technologies, such as augmented reality, virtual reality, and artificial intelligence that have the potential to revolutionize medical training by providing realistic, hands-on experiences in diagnosing and treating patients, practicing surgical procedures, and enhancing clinical decision-making skills. This scoping review aimed to examine the evolution of simulation technology and the emergence of metaverse applications in medical professionals' training, guided by Friedman's three dimensions in medical education: physical space, time, and content, along with an additional dimension of assessment. Methods: In this scoping review, we examined the related literature in six major databases including PubMed, EMBASE, CINAHL, Scopus, Web of Science, and ERIC. A total of 173 publications were selected for the final review and analysis. We thematically analyzed these studies by combining Friedman's three-dimensional framework with assessment. Results: Our scoping review showed that Metaverse technologies, such as virtual reality simulation and online learning modules have enabled medical education to extend beyond physical classrooms and clinical sites by facilitating remote training. In terms of the Time dimension, simulation technologies have made partial but meaningful progress in supplementing traditional time-dependent curricula, helping to shorten learning curves, and improve knowledge retention. As for the Content dimension, high-quality simulation and metaverse content require alignment with learning objectives, interactivity, and deliberate practice that should be developmentally integrated from basic to advanced skills. With respect to the Assessment dimension, learning analytics and automated metrics from metaverse-enabled simulation systems have enhanced competency evaluation and formative feedback mechanisms. However, their integration into high-stakes testing is limited, and qualitative feedback and human observation remain crucial. Conclusion: Our study provides an updated perspective on the achievements and limitations of using simulation to transform medical education, offering insights that can inform development priorities and research directions for human-centered, ethical metaverse applications that enhance healthcare professional training. 
    more » « less
  2. Innovative technologies such as virtual reality and additive manufacturing have been drastically changing our society, from how we design and manufacture products to how to educate and train the next-generation workforce. This paper reviews scientific studies on virtual reality assisted manufacturing education published from 2015 to 2022 from three different perspectives: targeted manufacturing disciplines/topics, virtual environment development, and outcome evaluation methods. This paper also summarizes the critical limitations of existing studies and identifies the key challenges in the field. Furthermore, some future research directions are discussed aiming to advance current manufacturing education and deliver a highly skilled workforce for U.S. future manufacturing. 
    more » « less
  3. Digitalization shapes the ways of learning, working, and entertainment. The Internet, which enables us to connect and socialize is evolving to become the metaverse, a post-reality universe, enabling virtual life parallel to reality. In addition to gaming and entertainment, industry and academia have noticed the metaverse’s benefits and possibilities. For industry, the metaverse is the enabler of the future digital workplace, and for academia, digital learning spaces enable realistic virtual training environments. A connection bridging the virtual world with physical production systems is required to enable digital workplaces and digital learning spaces. In this publication, extended reality–digital twin to real use cases are presented. The presented use cases utilize extended reality as high-level user interfaces and digital twins to create a bridge between virtual environments and robotic systems in industry, academia, and underwater exploration. 
    more » « less
  4. null (Ed.)
    Virtual reality (VR) technology allows for the creation of fully immersive environments that enable personalized manufacturing learning. This case study discusses the development of a virtual learning factory that integrates manual and automated manufacturing processes such as welding, fastening, 3D printing, painting, and automated assembly. Two versions of the virtual factory are developed: (1) a multiplayer VR environment for the design and assembly of car toys; which allows for the collaboration of multiple users in the same VR environment, and (2) a virtual plant that utilizes heavy machinery and automated assembly lines for car manufacturing. The virtual factory also includes an intelligent avatar that can interact with the users and guide them to the different sections of the plant. The virtual factory enhances the learning of advanced manufacturing concepts by combining virtual objects with hands-on activities and providing students with an engaging learning experience. 
    more » « less
  5. null (Ed.)
    Virtual reality (VR) technology allows for the creation of fully immersive environments that enable personalized manufacturing learning. This case study discusses the development of a virtual learning factory that integrates manual and automated manufacturing processes such as welding, fastening, 3D printing, painting, and automated assembly. Two versions of the virtual factory are developed: (1) a multiplayer VR environment for the design and assembly of car toys; which allows for the collaboration of multiple users in the same VR environment, and (2) a virtual plant that utilizes heavy machinery and automated assembly lines for car manufacturing. The virtual factory also includes an intelligent avatar that can interact with the users and guide them to the different sections of the plant. The virtual factory enhances the learning of advanced manufacturing concepts by combining virtual objects with hands-on activities and providing students with an engaging learning experience. 
    more » « less