skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coeval Holocene Stalagmites Record Multi‐Centennial Climate Variability and Drought in the Northern Rocky Mountains, USA
Abstract The El Niño Southern Oscillation and Pacific Decadal Oscillation (PDO) are key drivers of cool‐season precipitation variability in the western United States (US), including the Rocky Mountains. Together, they help modulate the north‐south “precipitation dipole,” a regional climate pattern operating on multi‐decadal timescales leading to dry conditions north of 40°N latitude when the south is wet, and vice versa. We investigate the natural evolution of this climate pattern using two precisely‐dated (5900 years ago to present), multi‐proxy, coeval stalagmite records of hydroclimate from Titan Cave, Wyoming, located just north of the modern‐day dipole transition zone. Consistent trace element and stable isotope records from the two stalagmites reflect the amount and seasonality of regional precipitation, documenting decreased winter snowfall and dry conditions over multi‐decadal intervals characterized by the warm phase of the PDO and more frequent and stronger El Niño events.  more » « less
Award ID(s):
2102884
PAR ID:
10648980
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
17
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The hydrological cycle in South America during austral summer, including extreme precipitation and floods, is significantly influenced by northerly low-level jets (LLJs) along the eastern Andes. These synoptic weather events have been associated with three different types of LLJs (Central, Northern, and Andes) and are sensitive to remote large-scale forcings. This study investigates how tropical forcings related to El Niño/Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) regulate the duration and frequency of each LLJ type and their impacts on extreme precipitation. Our analysis reveals that ENSO and PDO are important in driving the variability of LLJs over the past 65 years. Specifically, the Central LLJ type is more prevalent during El Niño and Warm/Neutral PDO phases, leading to heightened extreme precipitation in southern South America. Conversely, La Niña years during Cold PDO phases tend to favor the Northern and Andes LLJs, which are associated with increased precipitation extremes in the western Amazon and southeastern South America. Central and Andes LLJs tend to persist longer during these favored conditions, causing more pronounced precipitation events in the areas under their influence. This study enhances our understanding of the influence of large-scale atmospheric forcings on the regional precipitation dynamics in South America. 
    more » « less
  2. Abstract Observations show that the teleconnection between the El Niño‐Southern Oscillation (ENSO) and the Asian summer monsoon (ASM) is non‐stationary. However, the underlying mechanisms are poorly understood due to inadequate availability of reliable, long‐term observations. This study uses two state‐of‐the‐art data assimilation‐based reconstructions of last millennium climate to examine changes in the ENSO–ASM teleconnection; we investigate how modes of (multi‐)decadal climate variability (namely, the Pacific Decadal Oscillation, PDO, and the Atlantic Multidecadal Oscillation, AMO) modulate the ENSO–ASM relationship. Our analyses reveal that the PDO exerts a more pronounced impact on ASM variability than the AMO. By comparing different linear regression models, we find that including the PDO in addition to ENSO cycles can improve prediction of the ASM, especially for the Indian summer monsoon. In particular, dry (wet) anomalies caused by El Niño (La Niña) over India become enhanced during the positive (negative) PDO phases due to a compounding effect. However, composite differences in the ENSO–ASM relationship between positive and negative phases of the PDO and AMO are not statistically significant. A significant influence of the PDO/AMO on the ENSO–ASM relationship occurred only over a limited period within the last millennium. By leveraging the long‐term paleoclimate reconstructions, we document and interrogate the non‐stationary nature of the PDO and AMO in modulating the ENSO–ASM relationship. 
    more » « less
  3. Abstract Identifying the origins of wintertime climate variations in the Northern Hemisphere requires careful attribution of the role of El Niño–Southern Oscillation (ENSO). For example, Aleutian low variability arises from internal atmospheric dynamics and is remotely forced mainly via ENSO. How ENSO modifies the local sea surface temperature (SST) and North American precipitation responses to Aleutian low variability remains unclear, as teasing out the ENSO signal is difficult. This study utilizes carefully designed coupled model experiments to address this issue. In the absence of ENSO, a deeper Aleutian low drives a positive Pacific decadal oscillation (PDO)-like SST response. However, unlike the observed PDO pattern, a coherent zonal band of turbulent heat flux–driven warm SST anomalies develops throughout the subtropical North Pacific. Furthermore, non-ENSO Aleutian low variability is associated with a large-scale atmospheric circulation pattern confined over the North Pacific and North America and dry precipitation anomalies across the southeastern United States. When ENSO is included in the forcing of Aleutian low variability in the experiments, the ENSO teleconnection modulates the turbulent heat fluxes and damps the subtropical SST anomalies induced by non-ENSO Aleutian low variability. Inclusion of ENSO forcing results in wet precipitation anomalies across the southeastern United States, unlike when the Aleutian low is driven by non-ENSO sources. Hence, we find that the ENSO teleconnection acts to destructively interfere with the subtropical North Pacific SST and southeastern United States precipitation signals associated with non-ENSO Aleutian low variability. 
    more » « less
  4. Abstract Rainfall in southern California is highly variable, with some fluctuations explainable by climate patterns. Resulting runoff and heightened streamflow from rain events introduces freshwater plumes into the coastal ocean. Here we use a 105-year daily sea surface salinity record collected at Scripps Pier in La Jolla, California to show that El Niño Southern Oscillation and Pacific Decadal Oscillation both have signatures in coastal sea surface salinity. Averaging the freshest quantile of sea surface salinity over each year’s winter season provides a useful metric for connecting the coastal ocean to interannual winter rainfall variability, through the influence of freshwater plumes originating, at closest, 7.5 km north of Scripps Pier. This salinity metric has a clear relationship with dominant climate phases: negative Pacific Decadal Oscillation and La Niña conditions correspond consistently with lack of salinity anomaly/ dry winters. Fresh salinity anomalies (i.e., wet winters) occur during positive phase Pacific Decadal Oscillation and El Niño winters, although not consistently. This analysis emphasizes the strong influence that precipitation and consequent streamflow has on the coastal ocean, even in a region of overall low freshwater input, and provides an ocean-based metric for assessing decadal rainfall variability. 
    more » « less
  5. Abstract Climate warming in combination with nutrient enrichment can greatly promote phytoplankton proliferation and blooms in eutrophic waters. Lake Taihu, China, is a large, shallow and eutrophic system. Since 2007, this lake has experienced extensive nutrient input reductions aimed at controlling cyanobacterial blooms. However, intense cyanobacterial blooms have persisted through 2017 with a record‐setting bloom occurring in May 2017. Causal analysis suggested that this bloom was sygenerically driven by high external loading from flooding in 2016 in the Taihu catchment and a notable warmer winter during 2016/2017. High precipitation during 2016 was associated with a strong 2015/2016 El Niño in combination with the joint effects of Atlantic Multi‐decadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), while persistent warmth during 2016/2017 was strongly related to warm phases of AMO and PDO. The 2017 blooms elevated water column pH and led to dissolved oxygen depletion near the sediment, both of which mobilized phosphorus from the sediment to overlying water, further promoting cyanobacterial blooms. Our finding indicates that regional climate anomalies exacerbated eutrophication via a positive feedback mechanism, by intensifying internal nutrient cycling and aggravating cyanobacterial blooms. In light of global expansion of eutrophication and blooms, especially in large, shallow and eutrophic lakes, these regional effects of climate anomalies are nested within larger scale global warming predicted to continue in the foreseeable future. 
    more » « less