skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: Buy it Now, Track Me Later: Attacking User Privacy via Wi-Fi AP Online Auctions
Static and hard-coded layer-two network identifiers are well known to present security vulnerabilities and endanger user privacy. In this work, we introduce a new privacy attack against Wi-Fi access points listed on secondhand marketplaces. Specifically, we demonstrate the ability to remotely gather a large quantity of layer-two Wi-Fi identifiers by programmatically querying the eBay marketplace and applying state-of-the-art computer vision techniques to extract IEEE 802.11 BSSIDs from the seller's posted images of the hardware. By leveraging data from a global Wi-Fi Positioning System (WPS) that geolocates BSSIDs, we obtain the physical locations of these devices both pre- and post-sale. In addition to validating the degree to which a seller's location matches the location of the device, we examine cases of device movement–once the device is sold and then subsequently re-used in a new environment. Our work highlights a previously unrecognized privacy vulnerability and suggests, yet again, the strong need to protect layer-two network identifiers.  more » « less
Award ID(s):
2323193 1943240
PAR ID:
10649490
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
PoPETS
Date Published:
Journal Name:
Proceedings on Privacy Enhancing Technologies
Volume:
2025
Issue:
4
ISSN:
2299-0984
Page Range / eLocation ID:
912 to 925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Apple Wireless Direct Link (AWDL) is a key protocol in Apple’s ecosystem used by over one billion iOS and macOS devices for device-to-device communications. AWDL is a proprietary extension of the IEEE 802.11 (Wi-Fi) standard and integrates with Bluetooth Low Energy (BLE) for providing services such as Apple AirDrop. We conduct the first security and privacy analysis of AWDL and its integration with BLE. We uncover several security and privacy vulnerabilities ranging from design flaws to implementation bugs leading to a man-in-the-middle (MitM) attack enabling stealthy modification of files transmitted via AirDrop, denial-of-service (DoS) attacks preventing communication, privacy leaks that enable user identification and long-term tracking undermining MAC address randomization, and DoS attacks enabling targeted or simultaneous crashing of all neighboring devices. The flaws span across AirDrop’s BLE discovery mechanism, AWDL synchronization, UI design, and Wi-Fi driver implementation. Our analysis is based on a combination of reverse engineering of protocols and code supported by analyzing patents. We provide proof-of-concept implementations and demonstrate that the attacks can be mounted using a low-cost ($20) micro:bit device and an off-the-shelf Wi-Fi card. We propose practical and effective countermeasures. While Apple was able to issue a fix for a DoS attack vulnerability after our responsible disclosure, the other security and privacy vulnerabilities require the redesign of some of their services. 
    more » « less
  2. In this paper, we introduce a neural network (NN)-based symbol detection scheme for Wi-Fi systems and its associated hardware implementation in software radios. To be specific, reservoir computing (RC), a special type of recurrent neural network (RNN), is adopted to conduct the task of symbol detection for Wi-Fi receivers. Instead of introducing extra training overhead/set to facilitate the RC-based symbol detection, a new training framework is introduced to take advantage of the signal structure in existing Wi-Fi protocols (e.g., IEEE 802.11 standards), that is, the introduced RC-based symbol detector will utilize the inherent long/short training sequences and structured pilots sent by the Wi-Fi transmitter to conduct online learning of the transmit symbols. In other words, our introduced NN-based symbol detector does not require any additional training sets compared to existing Wi-Fi systems. The introduced RC-based Wi-Fi symbol detector is implemented on the software-defined radio (SDR) platform to further provide realistic and meaningful performance comparisons against the traditional Wi-Fi receiver. Over the air, experiment results show that the introduced RC based Wi-Fi symbol detector outperforms conventional Wi-Fi symbol detection methods in various environments indicating the significance and the relevance of our work. 
    more » « less
  3. Accessing the Internet through Wi-Fi networks offers an inexpensive alternative for offloading data from mobile broadband connections. Businesses such as fast food restaurants, coffee shops, hotels, and airports, provide complimentary Internet access to their customers through Wi-Fi networks. Clients can connect to the Wi-Fi hotspot using different wireless devices. However, network administrators may apply traffic shaping to control the wireless client's upload and download data rates. Such limitation is used to avoid overloading the hotspot, thus providing fair bandwidth allocation. Also, it allows for the collection of money from the client in order to have access to a faster Internet service. In this paper, we present a new technique to avoid bandwidth limitation imposed by Wi-Fi hotspots. The proposed method creates multiple virtual wireless clients using only one physical wireless interface card. Each virtual wireless client emulates a standalone wireless device. The combination of the individual bandwidth of each virtual wireless client results in an increase of the total bandwidth gained by the attacker. Our proposed technique was implemented and evaluated in a real-life environment with an increase in data rate up to 16 folds. 
    more » « less
  4. The vision of smart homes is rapidly becoming a reality, as the Internet of Things and other smart devices are deployed widely. Although smart devices offer convenience, they also create a significant management problem for home residents. With a large number and variety of devices in the home, residents may find it difficult to monitor, or even locate, devices. A central controller that brings all the home’s smart devices under secure management and a unified interface would help homeowners and residents track and manage their devices. We envision a solution called the SPLICEcube whose goal is to detect smart devices, locate them in three dimensions within the home, securely monitor their network traffic, and keep an inventory of devices and important device information throughout the device’s lifecycle. The SPLICEcube system consists of the following components: 1) a main cube, which is a centralized hub that incorporates and expands on the functionality of the home router, 2) a database that holds network data, and 3) a set of support cubelets that can be used to extend the range of the network and assist in gathering network data. To deliver this vision of identifying, securing, and managing smart devices, we introduce an architecture that facilitates intelligent research applications (such as network anomaly detection, intrusion detection, device localization, and device firmware updates) to be integrated into the SPLICEcube. In this thesis, we design a general-purpose Wi-Fi architecture that underpins the SPLICEcube. The architecture specifically showcases the functionality of the cubelets (Wi-Fi frame detection, Wi-Fi frame parsing, and transmission to cube), the functionality of the cube (routing, reception from cubelets, information storage, data disposal, and research application integration), and the functionality of the database (network data storage). We build and evaluate a prototype implementation to demonstrate our approach is scalable to accommodate new devices and extensible to support different applications. Specifically, we demonstrate a successful proof-of-concept use of the SPLICEcube architecture by integrating a security research application: an "Inside-Outside detection" system that classifies an observed Wi-Fi device as being inside or outside the home. 
    more » « less
  5. New capabilities in wireless network security have been enabled by deep learning that leverages and exploits signal patterns and characteristics in Radio Frequency (RF) data captured by radio receivers to identify and authenticate radio transmitters. Open-set detection is an area of deep learning that aims to identify RF data samples captured from new devices during deployment (aka inference) that were not part of the training set; i.e. devices that were unseen during training. Past work in open-set detection has mostly been applied to independent and identically distributed data such as images. In contrast, RF signal data present a unique set of challenges as the data forms a time series with non-linear time dependencies among the samples. In this paper, we introduce a novel open-set detection approach for RF data-driven device identification that extracts its neural network features from patterns of the hidden state values within a Convolutional Neural Network Long Short-Term Memory (CNN+LSTM) model. Experimental results obtained using real datasets collected from 15 IoT devices, each enabled with LoRa, wireless-Wi-Fi, and wired-Wi-Fi communication protocols, show that our new approach greatly improves the area under the precision-recall curve, and hence, can be used successfully to monitor and control unauthorized network access of wireless devices. 
    more » « less