Abstract LetXbe a compact normal complex space of dimensionnandLbe a holomorphic line bundle onX. Suppose that$$\Sigma =(\Sigma _1,\ldots ,\Sigma _\ell )$$ is an$$\ell $$ -tuple of distinct irreducible proper analytic subsets ofX,$$\tau =(\tau _1,\ldots ,\tau _\ell )$$ is an$$\ell $$ -tuple of positive real numbers, and let$$H^0_0(X,L^p)$$ be the space of holomorphic sections of$$L^p:=L^{\otimes p}$$ that vanish to order at least$$\tau _jp$$ along$$\Sigma _j$$ ,$$1\le j\le \ell $$ . If$$Y\subset X$$ is an irreducible analytic subset of dimensionm, we consider the space$$H^0_0 (X|Y, L^p)$$ of holomorphic sections of$$L^p|_Y$$ that extend to global holomorphic sections in$$H^0_0(X,L^p)$$ . Assuming that the triplet$$(L,\Sigma ,\tau )$$ is big in the sense that$$\dim H^0_0(X,L^p)\sim p^n$$ , we give a general condition onYto ensure that$$\dim H^0_0(X|Y,L^p)\sim p^m$$ . WhenLis endowed with a continuous Hermitian metric, we show that the Fubini-Study currents of the spaces$$H^0_0(X|Y,L^p)$$ converge to a certain equilibrium current onY. We apply this to the study of the equidistribution of zeros inYof random holomorphic sections in$$H^0_0(X|Y,L^p)$$ as$$p\rightarrow \infty $$ .
more »
« less
Planar chemical reaction systems with algebraic and non-algebraic limit cycles
Abstract The Hilbert numberH(n) is defined as the maximum number of limit cycles of a planar autonomous system of ordinary differential equations (ODEs) with right-hand sides containing polynomials of degree at most$$n \in {{\mathbb {N}}}$$ . The dynamics of chemical reaction systems with two chemical species can be (under mass-action kinetics) described by such planar autonomous ODEs, wherenis equal to the maximum order of the chemical reactions in the system. Analogues of the Hilbert number H(n) for three different classes of chemical reaction systems are investigated: (i) chemical systems with reactions up to then-th order; (ii) systems with up ton-molecular chemical reactions; and (iii) weakly reversible chemical reaction networks. In each case (i), (ii) and (iii), the question on the number of limit cycles is considered. Lower bounds on the modified Hilbert numbers are provided for both algebraic and non-algebraic limit cycles. Furthermore, given a general algebraic curve$$h(x,y)=0$$ of degree$$n_h \in {{\mathbb {N}}}$$ and containing one or more ovals in the positive quadrant, a chemical system is constructed which has the oval(s) as its stable algebraic limit cycle(s). The ODEs describing the dynamics of the constructed chemical system contain polynomials of degree at most$$n=2\,n_h+1.$$ Considering$$n_h \ge 4,$$ the algebraic curve$$h(x,y)=0$$ can contain multiple closed components with the maximum number of ovals given by Harnack’s curve theorem as$$1+(n_h-1)(n_h-2)/2$$ , which is equal to 4 for$$n_h=4.$$ Algebraic curve$$h(x,y)=0$$ with$$n_h=4$$ and the maximum number of four ovals is used to construct a chemical system which has four stable algebraic limit cycles.
more »
« less
- Award ID(s):
- 2051568
- PAR ID:
- 10649908
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of Mathematical Biology
- Volume:
- 90
- Issue:
- 6
- ISSN:
- 0303-6812
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Let$$\mathbb {F}_q^d$$ be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ and a fixed nonzero$$t\in \mathbb {F}_q$$ , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ , where$$h_y:E\rightarrow \{0,1\}$$ is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ that if$$|E|\ge Cq^{\frac{11}{4}}$$ andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ isdwhenever$$E\subseteq \mathbb {F}_q^d$$ with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ .more » « less
-
Abstract LetXbe ann-element point set in thek-dimensional unit cube$$[0,1]^k$$ where$$k \ge 2$$ . According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour)$$x_1, x_2, \ldots , x_n$$ through thenpoints, such that$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k$$ , where$$|x-y|$$ is the Euclidean distance betweenxandy, and$$c_k$$ is an absolute constant that depends only onk, where$$x_{n+1} \equiv x_1$$ . From the other direction, for every$$k \ge 2$$ and$$n \ge 2$$ , there existnpoints in$$[0,1]^k$$ , such that their shortest tour satisfies$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}$$ . For the plane, the best constant is$$c_2=2$$ and this is the only exact value known. Bollobás and Meir showed that one can take$$c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ for every$$k \ge 3$$ and conjectured that the best constant is$$c_k = 2^{1/k} \cdot \sqrt{k}$$ , for every$$k \ge 2$$ . Here we significantly improve the upper bound and show that one can take$$c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ or$$c_k = 2.91 \sqrt{k} \ (1+o_k(1))$$ . Our bounds are constructive. We also show that$$c_3 \ge 2^{7/6}$$ , which disproves the conjecture for$$k=3$$ . Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed.more » « less
-
Abstract For any integer$$h\geqslant 2$$ , a set of integers$$B=\{b_i\}_{i\in I}$$ is a$$B_h$$ -set if allh-sums$$b_{i_1}+\ldots +b_{i_h}$$ with$$i_1<\ldots are distinct. Answering a question of Alon and Erdős [2], for every$$h\geqslant 2$$ we construct a set of integersXwhich is not a union of finitely many$$B_h$$ -sets, yet any finite subset$$Y\subseteq X$$ contains an$$B_h$$ -setZwith$$|Z|\geqslant \varepsilon |Y|$$ , where$$\varepsilon :=\varepsilon (h)$$ . We also discuss questions related to a problem of Pisier about the existence of a setAwith similar properties when replacing$$B_h$$ -sets by the requirement that all finite sums$$\sum _{j\in J}b_j$$ are distinct.more » « less
-
Abstract Given$$g \in \mathbb N \cup \{0, \infty \}$$ , let$$\Sigma _g$$ denote the closed surface of genusgwith a Cantor set removed, if$$g<\infty $$ ; or the blooming Cantor tree, when$$g= \infty $$ . We construct a family$$\mathfrak B(H)$$ of subgroups of$${{\,\textrm{Map}\,}}(\Sigma _g)$$ whose elements preserve ablock decompositionof$$\Sigma _g$$ , andeventually like actlike an element ofH, whereHis a prescribed subgroup of the mapping class group of the block. The group$$\mathfrak B(H)$$ surjects onto an appropriate symmetric Thompson group of Farley–Hughes; in particular, it answers positively. Our main result asserts that$$\mathfrak B(H)$$ is of type$$F_n$$ if and only ifHis. As a consequence, for every$$g\in \mathbb N \cup \{0, \infty \}$$ and every$$n\ge 1$$ , we construct a subgroup$$G <{{\,\textrm{Map}\,}}(\Sigma _g)$$ that is of type$$F_n$$ but not of type$$F_{n+1}$$ , and which contains the mapping class group of every compact surface of genus$$\le g$$ and with non-empty boundary.more » « less
An official website of the United States government

