The demand is growing for a populace that is AI literate; such literacy centers on enabling individuals to evaluate, collaborate with, and effectively use AI. Because the middle school years are a critical time for developing youths’ perceptions and dispositions toward STEM, creating engaging AI learning experiences for middle grades students (ages 11 to 14) is paramount. The need for providing enhanced access to AI learning opportunities is especially pronounced in rural areas, which are typically underserved and underresourced. Inspired by prior research that game design holds significant potential for cultivating student interest and knowledge in computer science, we are designing, developing, and iteratively refining an AI-centered game development environment that infuses AI learning into game design activities. In this work, we review design principles for game design interventions focused on middle grades computer science education and explore how to introduce AI learning experiences into interactive game-design activities. We also discuss results from our initial co-design sessions with middle grades students and teachers in rural communities.
more »
« less
This content will become publicly available on April 25, 2026
AI Literacy for Underserved Students: Leveraging Cultural Capital from Underserved Communities for AI Education Research
As Artificial Intelligence (AI) continues to influence various aspects of society, the need for AI literacy education for K-12 students has grown. An increasing number of AI literacy studies aim to enhance students’ competencies in understanding, using, and critically evaluating AI systems. However, despite the vulnerabilities faced by students from underserved communities—due to factors such as socioeconomic status, gender, and race—these students remain underrepresented in existing research. To address this gap, this study focuses on leveraging the cultural capital that students acquire from their communities’ unique history and culture for AI literacy education. Education researchers have demonstrated that identifying and mobilizing cultural capital is an effective strategy for educating these populations. Through collaboration with 26 students from underserved communities—including those who are socioeconomically disadvantaged, female, or people of color—this paper identifies three types of cultural capital relevant to AI literacy education: 1) resistant capital, 2) communal capital, and 3) creative capital. The study also emphasizes that collaborative relationships between researchers and students are crucial for mobilizing cultural capital in AI literacy education research.
more »
« less
- Award ID(s):
- 2431223
- PAR ID:
- 10650875
- Publisher / Repository:
- ACM
- Date Published:
- Page Range / eLocation ID:
- 1 to 15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper describes a newly launched project that will produce a new approach to public microtransit for underserved communities. Public microtransit cannot rely on pricing signals to manage demand, and current approaches face the challenges of simultaneously being underutilized and overextended. This project conceives of the setting as a sociotechnical system. Its main idea is to engage users through AI agents in conjunction with platform constraints to find solutions that purely technical conceptions cannot find. The project was specified over an intense series of discussions with key stakeholders (riders, city government, and nongovernmental agencies) and brings together expertise in the disciplines of AI, Operations Research, Urban Planning, Psychology, and Community Development. The project will culminate in a pilot study, results from which will facilitate the transfer of its technology to additional communities.more » « less
-
Abstract As generative artificial intelligence (AI) becomes increasingly integrated into society and education, more institutions are implementing AI usage policies and offering introductory AI courses. These courses, however, should not replicate the technical focus typically found in introductory computer science (CS) courses like CS1 and CS2. In this paper, we use an adjustable, interdisciplinary socio‐technical AI literacy framework to design and present an introductory AI literacy course. We present a refined version of this framework informed by the teaching of a 1‐credit general education AI literacy course (primarily for freshmen and first‐year students from various majors), a 3‐credit course for CS majors at all levels, and a summer camp for high school students. Drawing from these teaching experiences and the evolving research landscape, we propose an introductory AI literacy course design framework structured around four cross‐cutting pillars. These pillars encompass (1) understanding the scope and technical dimensions of AI technologies, (2) learning how to interact with (generative) AI technologies, (3) applying principles of critical, ethical, and responsible AI usage, and (4) analyzing implications of AI on society. We posit that achieving AI literacy is essential for all students, those pursuing AI‐related careers, and those following other educational or professional paths. This introductory course, positioned at the beginning of a program, creates a foundation for ongoing and advanced AI education. The course design approach is presented as a series of modules and subtopics under each pillar. We emphasize the importance of thoughtful instructional design, including pedagogy, expected learning outcomes, and assessment strategies. This approach not only integrates social and technical learning but also democratizes AI education across diverse student populations and equips all learners with the socio‐technical, multidisciplinary perspectives necessary to navigate and shape the ethical future of AI.more » « less
-
The emergence of increasingly powerful AI technologies calls for the design and development of K-12 AI literacy curricula that can support students who will be entering a profoundly changed labor market. However, developing, implementing, and scaling AI literacy curricula poses significant challenges. It will be essential to develop a robust, evidence-based AI education research foundation that can inform AI literacy curriculum development. Unlike K-12 science and mathematics education, there is not currently a research foundation for K-12 AI education. In this article we provide a component-based definition of AI literacy, present the need for implementing AI literacy education across all grade bands, and argue for the creation of research programs across four areas of AI education: (1) K-12 AI Learning & Technology; (2) K-12 AI Education Integration into STEM, Language Arts, and Social Science Education; (3) K-12 AI Professional Development for Teachers and Administrators; and (4) K-12 AI Assessment.more » « less
-
Abstract Artificial intelligence (AI) has gained widespread public interest in recent years. However, as AI literacy remained excluded from the standard academic curricula, AI education in the US was predominantly offered through extra-curricular activities, which limited AI learning exposure to only a select group of students. Given these limitations, the need to integrate AI literacy education into the standard curricula is increasingly evident. This study investigated the integration of AI learning in an advanced biology course. Thirty-seven students participated in four lessons embedding AI learning in biology contexts. The interplay of students’ AI learning and biology knowledge was examined from the quantitative measure of conceptual understanding and qualitative analysis of interdisciplinary reasoning. This concurrent triangulation research design utilized results from both quantitative and qualitative analyses to develop a comprehensive understanding of students’ AI learning in the biology context. The results of the study showed a significant improvement in students’ AI concepts. Students’ biology knowledge had a slight increase, but it was not statistically significant. Both quantitative and qualitative results underscored a close connection between students’ AI learning and their biology knowledge, though the quantitative findings were not conclusive in some lessons. The article concluded with a discussion of the potential reasons for those discrepancies. In addition, suggestions were provided for future research and practitioners who are interested in integrating AI education across curricula.more » « less
An official website of the United States government
