skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tables in support of "Antarctic response to orbital forcing during the intensification of extensive bipolar glaciation (1.75-3.30 Ma) from relative paleomagnetic intensity (RPI) stratigraphy of the Dove Basin, Scotia Sea, in Iceberg Alley"
{"Abstract":["Supplementary tables in support of "Antarctic response to orbital forcing during the intensification of extensive bipolar glaciation (1.75-3.30 Ma) from relative paleomagnetic intensity (RPI) stratigraphy of the Dove Basin, Scotia Sea, in Iceberg Alley.""]}  more » « less
Award ID(s):
2114777 2302832
PAR ID:
10651244
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Zenodo
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. {"Abstract":["This record contains supplementary information for the article "Inheritance of DNA methylation differences in the mangrove Rhizophora mangle" published in Evolution&Development. It contains the barcodes (barcodes.txt), the reference contigs (contigs.fasta.gz), the annotation of the reference contigs (mergedAnnot.csv.gz), the SNPs (snps.vcf.gz), the methylation data (methylation.txt.gz), and the experimental design (design.txt). All data are unfiltered. Short reads are available on SRA (PRJNA746695). Note that demultiplexing of the pooled reads (SRX11452376) will fail because the barcodes are already removed and the header information is lost during SRA submission. Instead, use the pre-demultiplexed reads that are as well linked to PRJNA746695.<\/p>\n\n\n <\/p>\n\nTable S13 (TableS13_DSSwithGeneAnnotation.offspringFams.csv.gz): <\/strong><\/p>\n\nDifferential cytosine methylation between families using the mother data set. The first three columns fragment number ("chr"), the position within the fragment ("pos"), and the sequence context ("context"). Columns with the pattern FDR_<X>_vs_<Y> contain false discovery rates of a test comparing population X with population Y. Average DNA methylation levels for each population are given in the columns "AC", "FD", "HI", "UTB", "WB", and "WI". The remaining columns contain the annotation of the fragment, for example whether it matches to a gene and if yes, the gene name ID and description are provided.<\/p>"]} 
    more » « less
  2. This data has been collected and processed as part of the MOSAiC (Multidisciplinary Drifting Observatory for the Study of Arctic Climate) expedition. MOSAiC is a collaborative initiative led by the Alfred Wegener Institute and has received substantial funding from the German Federal Ministry of Education and Research, as well as the US National Science Foundation, Department of Energy, NOAA, and NASA. Numerous other international agencies and institutions have also made significant contributions. The primary objective of this program was to conduct a comprehensive investigation of the evolving Arctic over the course of a year. The expedition took place from October 2019 to October 2020 and was conducted aboard the Research Vessel Ice Breaker (RVIB) Polarstern, involving participants from 20 nations. As part of this submission, we are presenting five distinct datasets. Two of these datasets are related to seawater, two pertain to meltwater, and one pertains to sea ice. The "in-situ" datasets provide information on dissolved methane concentrations and isotope ratios, while the "in-vitro" datasets offer insights into potential methane oxidation rate constants. In the case of sea ice, only "in-vitro" data was collected, as discrete measurements were obtained from another research group. These datasets are the result of the project titled "Collaborative Research: Quantifying microbial controls on the annual cycle of methane and oxygen within the ultraoligotrophic Central Arctic during MOSAiC." The aim of this study was to assess the marine methane metabolism during a one-year period in the Central Arctic Ocean. The results have provided insights into the biogeography of methane hotspots, both in terms of production and oxidation. 
    more » « less
  3. Abstract The sedimentary pyrite sulfur isotope (δ34S) record is an archive of ancient microbial sulfur cycling and environmental conditions. Interpretations of pyrite δ34S signatures in sediments deposited in microbial mat ecosystems are based on studies of modern microbial mat porewater sulfide δ34S geochemistry. Pyrite δ34S values often capture δ34S signatures of porewater sulfide at the location of pyrite formation. However, microbial mats are dynamic environments in which biogeochemical cycling shifts vertically on diurnal cycles. Therefore, there is a need to study how the location of pyrite formation impacts pyrite δ34S patterns in these dynamic systems. Here, we present diurnal porewater sulfide δ34S trends and δ34S values of pyrite and iron monosulfides from Middle Island Sinkhole, Lake Huron. The sediment–water interface of this sinkhole hosts a low‐oxygen cyanobacterial mat ecosystem, which serves as a useful location to explore preservation of sedimentary pyrite δ34S signatures in early Earth environments. Porewater sulfide δ34S values vary by up to ~25‰ throughout the day due to light‐driven changes in surface microbial community activity that propagate downwards, affecting porewater geochemistry as deep as 7.5 cm in the sediment. Progressive consumption of the sulfate reservoir drives δ34S variability, instead of variations in average cell‐specific sulfate reduction rates and/or sulfide oxidation at different depths in the sediment. The δ34S values of pyrite are similar to porewater sulfide δ34S values near the mat surface. We suggest that oxidative sulfur cycling and other microbial activity promote pyrite formation in and immediately adjacent to the microbial mat and that iron geochemistry limits further pyrite formation with depth in the sediment. These results imply that primary δ34S signatures of pyrite deposited in organic‐rich, iron‐poor microbial mat environments capture information about microbial sulfur cycling and environmental conditions at the mat surface and are only minimally affected by deeper sedimentary processes during early diagenesis. 
    more » « less
  4. Santhanam, Rahul (Ed.)
    We initiate the study of error correcting codes over the multi-party adversarial broadcast channel. Specifically, we consider the classic information dissemination problem where n parties, each holding an input bit, wish to know each other’s input. For this, they communicate in rounds, where, in each round, one designated party sends a bit to all other parties over a channel governed by an adversary that may corrupt a constant fraction of the received communication. We mention that the dissemination problem was studied in the stochastic noise model since the 80’s. While stochastic noise in multi-party channels has received quite a bit of attention, the case of adversarial noise has largely been avoided, as such channels cannot handle more than a 1/n-fraction of errors. Indeed, this many errors allow an adversary to completely corrupt the incoming or outgoing communication for one of the parties and fail the protocol. Curiously, we show that by eliminating these "trivial" attacks, one can get a simple protocol resilient to a constant fraction of errors. Thus, a model that rules out such attacks is both necessary and sufficient to get a resilient protocol. The main shortcoming of our dissemination protocol is its length: it requires Θ(n²) communication rounds whereas n rounds suffice in the absence of noise. Our main result is a matching lower bound of Ω(n²) on the length of any dissemination protocol in our model. Our proof first "gets rid" of the channel noise by converting it to a form of "input noise", showing that a noisy dissemination protocol implies a (noiseless) protocol for a version of the direct sum gap-majority problem. We conclude the proof with a tight lower bound for the latter problem, which may be of independent interest. 
    more » « less
  5. This dataset stores the data of the article The effect of Pliocene regional climate changes on silicate weathering: a potential amplifier of Pliocene-Pleistocene cooling P. Maffre, J. Chiang & N. Swanson-Hysell, Climate of the Past). This study uses a climate model (GCM) to reproduce an estimate of Pliocene Sea Surface Temperature (SST). The main GCM outputs of this modeling (with a slab ocean model) are stored in "GCM_outputs_for_GEOCLIM/", as well as the climatologies from ERA5 reanalysis. The other GCM outputs that were used in intermediary steps (coupled ocean-atmosphere, and fixed SST simulations) are stored in "other_GCM_outputs/". The forcing files (Q-flux) and other boundary conditions to run the "main" GCM simulations can be found in "other_GCM_outputs/Q-flux_derivation/", as well as the scripts used to generate them. Secondly, the mentioned study uses the GCM outputs in "GCM_outputs_for_GEOCLIM/" as inputs for the silicate weathering model GEOCLIM-DynSoil-Steady-State (https://github.com/piermafrost/GEOCLIM-dynsoil-steady-state/tree/PEN), to investigate weathering and equilibrium CO2 changes due to Pliocene SST conditions. The results of these simulations are stored in "GEOCLIM-DynSoil-Steady-State_outputs/". The purpose of this dataset is to provide the raw outputs used to draw the conclusions of Maffre et al. (2023), and to allow the experiments to be reproduced, by providing the scripts to generate the boundary conditions. 
    more » « less