We present experiments on oscillating hydrofoils undergoing combined heaving and pitching motions, paying particular attention to connections between propulsive efficiency and coherent wake features extracted using modal analysis. Time-averaged forces and particle image velocimetry measurements of the flow field downstream of the foil are presented for a Reynolds number of Re=11000 and Strouhal numbers in the range St=0.16--0.35. These conditions produce 2S and 2P wake patterns, as well as a near-momentumless wake structure. A triple decomposition using the optimized dynamic mode decomposition method is employed to identify dominant modal components (or coherent structures) in the wake. These structures can be connected to wake instabilities predicted using spatial stability analyses. Examining the modal components of the wake provides insightful explanations into the transition from drag to thrust production, and conditions that lead to peak propulsive efficiency. In particular, we find modes that correspond to the primary vortex development in the wakes. Other modal components capture elements of bluff body shedding at Strouhal numbers below the optimum for peak propulsive efficiency and characteristics of separation for Strouhal numbers higher than the optimum.
more »
« less
Revisiting a Drag Partition Model For Canopy-Like Roughness Elements
Abstract Turbulent flows over a large surface area (S) covered bynobstacles experience an overall drag due to the presence of the ground and the protruding obstacles into the flow. The drag partition between the roughness obstacles and the ground is analyzed using an analytical model proposed by Raupach (Boundary-Layer Meteorol 60:375-395, 1992) and is hereafter referred to as R92. The R92 is based on the premise that the wake behind an isolated roughness element can be described by a shelter areaAand a shelter volumeV. The individual sizes ofAandVwithout any interference from other obstacles can be determined from scaling analysis for the spread of wakes. To upscale from an individual roughness element ton/Selements where wakes may interact, R92 adopted a background stress re-normalizing instead of reducingAorVwith each element addition. This work demonstrates that R92’s approach results in a linear background stress reduction inAandVonly when the ratio ofn/Sis small, due to a low probability of wake interactions. This probabilistic nature suggests that up-scaling from individual to multiple roughness elements can be re-formulated using stochastic averaging methods proposed here. The two approaches are shown to recover R92 under plausible conditions. An alternative scaling for the shelter volume is also proposed here using thermodynamic arguments of work and dissipation though the final outcome remains similar to R92. Comparisons between R92 and available data spanning more than two decades after R92 on blocks and vegetation-like roughness elements confirm the practical utility of R92. The agreement between R92 and this updated databases of experiments and simulations confirm the potential use of R92 in large-scale models provided that the relevant parameters accommodate certain features of the roughness element type (cube versus vegetation-like) and, to a lesser extent, their configuration throughoutS. Last, a comparison between R92 and models based on first-order closure principles with constant mixing length suggests that R92 can outperform such models when evaluated across a wide range of roughness densities.
more »
« less
- Award ID(s):
- 2028633
- PAR ID:
- 10651512
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Boundary-Layer Meteorology
- Volume:
- 190
- Issue:
- 11
- ISSN:
- 0006-8314
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present experiments on oscillating hydrofoils undergoing combined heaving and pitching motions, paying particular attention to connections between propulsive efficiency and coherent wake features extracted using modal analysis. Time-averaged forces and particle image velocimetry measurements of the flow field downstream of the foil are presented for a Reynolds number of Re=11000 and Strouhal numbers in the range St=0.16–0.35 . These conditions produce 2S and 2P wake patterns, as well as a near-momentumless wake structure. A triple decomposition using the optimized dynamic mode decomposition method is employed to identify dominant modal components (or coherent structures) in the wake. These structures can be connected to wake instabilities predicted using spatial stability analyses. Examining the modal components of the wake provides insightful explanations into the transition from drag to thrust production, and conditions that lead to peak propulsive efficiency. In particular, we find modes that correspond to the primary vortex development in the wakes. Other modal components capture elements of bluff body shedding at Strouhal numbers below the optimum for peak propulsive efficiency and characteristics of separation for Strouhal numbers higher than the optimum.more » « less
-
Large Eddy Simulations (LES) of neutral flow over regular arrays of cuboids are conducted to explore connections between momentum (z 0m ) and scalar (z 0s ) roughness lengths in urban environments, and how they are influenced by surface geometry. As LES resolves the obstacles but not the micro‐scale boundary layers attached to them, the aforementioned roughness lengths are analyzed at two distinct spatial scales. At the micro‐scale (roughness of individual facets, e.g. roofs), it is assumed that both momentum and scalar transfer are governed by accepted arguments for smooth walls that form the basis for the LES wall model. At the macro‐scale, the roughness lengths are representative of the aggregate effects of momentum and scalar transfer over the resolved roughness elements of the whole surface, and hence they are directly computed from the LES. The results indicate that morphologically‐based parameterizations for macro‐scale z 0m are adequate overall. The relation between the momentum and scalar macro‐roughness values, as conventionally represented by log(z 0m /z 0s ) and assumed to scale with urn:x-wiley:00359009:media:qj3839:qj3839-math-0001 (where Re * is a roughness Reynolds number), is then interpreted using surface renewal theory (SRT). SRT predicts n = 1/4 when only Kolmogorov‐scale eddies dominate the scalar exchange, whereas n = 1/2 is predicted when large eddies limit the renewal dynamics. The latter is found to better capture the LES results. However, both scaling relations indicate that z 0s decreases when z 0m increases for typical urban geometries and scales. This is opposite to how their relation is usually modeled for urban canopies (i.e. z 0s /z 0m is a fixed value smaller than unity).more » « less
-
In the coastal ocean, interactions of waves and currents with large roughness elements, similar in size to wave orbital excursions, generate drag and dissipate energy. These boundary layer dynamics differ significantly from well-studied small-scale roughness. To address this problem, we derived spatially and phase-averaged momentum equations for combined wave–current flows over rough bottoms, including the canopy layer containing obstacles. These equations were decomposed into steady and oscillatory parts to investigate the effects of waves on currents, and currents on waves. We applied this framework to analyse large-eddy simulations of combined oscillatory and steady flows over hemisphere arrays (diameter $$D$$ ), in which current ( $$U_c$$ ), wave velocity ( $$U_w$$ ) and period ( $$T$$ ) were varied. In the steady momentum budget, waves increase drag on the current, and this is balanced by the total stress at the canopy top. Dispersive stresses from oscillatory flow around obstacles are increasingly important as $$U_w/U_c$$ increases. In the oscillatory momentum budget, acceleration in the canopy is balanced by pressure gradient, added-mass and form drag forces; stress gradients are small compared to other terms. Form drag is increasingly important as the Keulegan–Carpenter number $$KC=U_wT/D$$ and $$U_c/U_w$$ increase. Decomposing the drag term illustrates that a quadratic relationship predicts the observed dependences of steady and oscillatory drag on $$U_c/U_w$$ and $KC$ . For large roughness elements, bottom friction is well represented by a friction factor ( $$f_w$$ ) defined using combined wave and current velocities in the canopy layer, which is proportional to drag coefficient and frontal area per unit plan area, and increases with $KC$ and $$U_c/U_w$$ .more » « less
-
Direct numerical simulations are performed for incompressible, turbulent channel flow over a smooth wall and different sinusoidal wall roughness configurations at a constant $$Re_\tau = 720$$ . Sinusoidal walls are used to study the effects of well-defined geometric features of roughness-amplitude, $$a$$ , and wavelength, $$\lambda$$ , on the flow. The flow in the near-wall region is strongly influenced by both $$a$$ and $$\lambda$$ . Establishing appropriate scaling laws will aid in understanding the effects of roughness and identifying the relevant physical mechanisms. Using inner variables and the roughness function to scale the flow quantities provides support for Townsend's hypothesis, but inner scaling is unable to capture the flow physics in the near-wall region. We provide modified scaling relations considering the dynamics of the shear layer and its interaction with the roughness. Although not a particularly surprising observation, this study provides clear evidence of the dependence of flow features on both $$a$$ and $$\lambda$$ . With these relations, we are able to collapse and/or align peaks for some flow quantities and, thus, capture the effects of surface roughness on turbulent flows even in the near-wall region. The shear-layer scaling supports the hypothesis that the physical mechanisms responsible for turbulent kinetic energy production in turbulent flows over rough walls are greatly influenced by the shear layer and its interaction with the roughness elements. Finally, a semiempirical model is developed to predict the contribution of pressure and skin friction drag on the roughness element based purely on its geometric parameters and the corresponding shear-layer velocity scale.more » « less
An official website of the United States government

