Abstract A sensitive (1σrms ≤ 3 mK; 2 MHz resolution) 1 mm spectral survey (214.5–285.5 GHz) of the envelope of the oxygen-rich supergiant star NML Cygni (NML Cyg) has been conducted using the 10 m Submillimeter Telescope of the Arizona Radio Observatory. These data represent the first spectral line survey of NML Cyg and are complementary to a previous 1 mm survey of the envelope of a similar hypergiant, VY Canis Majoris (VY CMa). The complete NML Cyg data set is presented here. In the survey, 104 emission lines were observed, arising from 17 different molecules and 4 unidentified features. Many of the observed features have complex line profiles, arising from asymmetric outflows characteristic of hypergiant stars. While most of the lines in the survey arise from SiO, SO, SO2, and SiS, CO had the strongest emission. Five other C-bearing species are identified in the survey (HCN, CN, HCO+, CS, and HNC), demonstrating an active carbon chemistry despite the O-rich environment. Moreover, NS was observed, but not NO, although favorable transitions of both molecules lie in the surveyed region. Sulfur chemistry appears to be prominent in NML Cyg and plays an important role in the collimated outflows. The refractory species observed, NaCl and AlO, have narrow emission lines, indicating that these molecules do not reach the terminal expansion velocity. NaCl and AlO likely condense into dust grains at r < 50R*. From NaCl, the chlorine isotope ratio was determined to be35Cl/37Cl = 3.85 ± 0.30.
more »
« less
This content will become publicly available on August 1, 2026
Molecules and Chemistry in Red Supergiants
The envelopes of Red Supergiants (RSGs) have a unique chemical environment not seen in other types of stars. They foster an oxygen-rich synthesis but are tempered by sporadic and chaotic mass loss, which distorts the envelope and creates complex outflow sub-structures consisting of knots, clumps, and arcs. Near the stellar photosphere, molecules and grains form under approximate LTE conditions, as predicted by chemical models. However, the complicated outflows appear to have distinct chemistries generated by shocks and dust destruction. Various RSG envelopes have been probed for their molecular content, mostly by radio and millimeter observations; however, VY Canis Majoris (VY CMa) and NML Cygni (NML Cyg) display the highest chemical complexity, and also the most complicated envelope structure. Thus far, over 29 different molecules have been identified in the envelopes of RSGs. Some molecules are common for circumstellar gas, including CO, SiO, HCN and H2O, which have abundances of ∼10−6–10−4, relative to H2. More exotic oxides have additionally been discovered, such as AlO, AlOH, PO, TiO2, and VO, with abundances of ∼10−9–10−7. RSG shells support intricate maser emission in OH, H2O and SiO, as well. Studies of isotope ratios in molecules suggest dredge-up at least into the H-burning shell, but further exploration is needed.
more »
« less
- PAR ID:
- 10652977
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Galaxies
- Volume:
- 13
- Issue:
- 4
- ISSN:
- 2075-4434
- Page Range / eLocation ID:
- 82
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract TheJ= 5.5 → 4.5 andJ= 5 → 4 transitions of PO and PN, respectively, have been imaged in the envelope of hypergiant star VY Canis Majoris (VY CMa) using the Atacama Large Millimeter/submillimeter Array with angular resolutions of 0.″2 and 1.″5 and data from the Submillimeter Telescope of the Arizona Radio Observatory. These maps are the first high-fidelity images of PO and PN in a circumstellar envelope. Both molecules are primarily present in a spherical, star-centered region with a radius ∼60R*(0.″5), indicating formation by LTE chemistry and then condensation into grains. PN, however, shows additional, fan-shaped emission 2″ southwest of the star, coincident with dust features resolved by Hubble Space Telescope (HST), as well as four newly identified distinct structures 1″–2″ toward the north, east, and west (Cloudlets I–IV), not visible in HST images. The “SW Fan” and the cloudlets are also prominent in theJ= 5.5 → 4.5 transition of NS. The correlation of PN with NS, SiO, and dust knots in the SW Fan suggests a formation in shocked gas enhanced with nitrogen. Excess nitrogen is predicted to favor PN synthesis over PO. Abundances for PN and PO in the spherical source aref∼ 4.4 × 10−8and 1.4 × 10−7, respectively, relative to H2. Given a cosmic abundance of phosphorus, an unusually high fraction (∼35%) is contained in PO and PN. Alternatively, the stellar winds may be enriched in P (and N) by dredge-up from the interior of VY CMa.more » « less
-
Abstract Eruptive mass loss likely produces the energetic outbursts observed from some massive stars before they become core-collapse supernovae (SNe). The resulting dense circumstellar medium may also cause the subsequent SNe to be observed as Type IIn events. The leading hypothesis of the cause of these outbursts is the response of the envelope of the red supergiant (RSG) progenitor to energy deposition in the months to years prior to collapse. Early theoretical studies of this phenomenon were limited to 1D, leaving the 3D convective RSG structure unaddressed. UsingFLASH's hydrodynamic capabilities, we explore the 3D outcomes by constructing convective RSG envelope models and depositing energies less than the envelope binding energies on timescales shorter than the envelope dynamical time deep within them. We confirm the 1D prediction of an outward-moving acoustic pulse steepening into a shock, unbinding the outermost parts of the envelope. However, we find that the initial 2–4 km s−1convective motions seed the intrinsic convective instability associated with the high-entropy material deep in the envelope, enabling gas from deep within the envelope to escape and increasing the amount of ejected mass compared to an initially “quiescent” envelope. The 3D models reveal a rich density structure, with column densities varying by ≈10× along different lines of sight. Our work highlights that the 3D convective nature of RSG envelopes impacts our ability to reliably predict the outburst dynamics, the amount, and the spatial distribution of the ejected mass associated with deep energy deposition.more » « less
-
ABSTRACT The core accretion model of giant planet formation has been challenged by the discovery of recycling flows between the planetary envelope and the disc that can slow or stall envelope accretion. We carry out 3D radiation hydrodynamic simulations with an updated opacity compilation to model the proto-Jupiter’s envelope. To isolate the 3D effects of convection and recycling, we simulate both isolated spherical envelopes and envelopes embedded in discs. The envelopes are heated at given rates to achieve steady states, enabling comparisons with 1D models. We vary envelope properties to obtain both radiative and convective solutions. Using a passive scalar, we observe significant mass recycling on the orbital time-scale. For a radiative envelope, recycling can only penetrate from the disc surface until ∼0.1–0.2 planetary Hill radii, while for a convective envelope, the convective motion can ‘dredge up’ the deeper part of the envelope so that the entire convective envelope is recycled efficiently. This recycling, however, has only limited effects on the envelopes’ thermal structure. The radiative envelope embedded in the disc has identical structure as the isolated envelope. The convective envelope has a slightly higher density when it is embedded in the disc. We introduce a modified 1D approach which can fully reproduce our 3D simulations. With our updated opacity and 1D model, we recompute Jupiter’s envelope accretion with a 10 M⊕ core, and the time-scale to runaway accretion is shorter than the disc lifetime as in prior studies. Finally, we discuss the implications of the efficient recycling on the observed chemical abundances of the planetary atmosphere (especially for super-Earths and mini-Neptunes).more » « less
-
Abstract We present high-cadence optical, ultraviolet (UV), and near-infrared data of the nearby ( D ≈ 23 Mpc) Type II supernova (SN) 2021yja. Many Type II SNe show signs of interaction with circumstellar material (CSM) during the first few days after explosion, implying that their red supergiant (RSG) progenitors experience episodic or eruptive mass loss. However, because it is difficult to discover SNe early, the diversity of CSM configurations in RSGs has not been fully mapped. SN 2021yja, first detected within ≈ 5.4 hours of explosion, shows some signatures of CSM interaction (high UV luminosity and radio and x-ray emission) but without the narrow emission lines or early light-curve peak that can accompany CSM. Here we analyze the densely sampled early light curve and spectral series of this nearby SN to infer the properties of its progenitor and CSM. We find that the most likely progenitor was an RSG with an extended envelope, encompassed by low-density CSM. We also present archival Hubble Space Telescope imaging of the host galaxy of SN 2021yja, which allows us to place a stringent upper limit of ≲ 9 M ☉ on the progenitor mass. However, this is in tension with some aspects of the SN evolution, which point to a more massive progenitor. Our analysis highlights the need to consider progenitor structure when making inferences about CSM properties, and that a comprehensive view of CSM tracers should be made to give a fuller view of the last years of RSG evolution.more » « less
An official website of the United States government
