Abstract We study collections of subrings of$$H^*({\overline {\mathcal {M}}}_{g,n})$$that are closed under the tautological operations that map cohomology classes on moduli spaces of smaller dimension to those on moduli spaces of larger dimension and contain the tautological subrings. Such extensions of tautological rings are well-suited for inductive arguments and flexible enough for a wide range of applications. In particular, we confirm predictions of Chenevier and Lannes for the$$\ell $$-adic Galois representations and Hodge structures that appear in$$H^k({\overline {\mathcal {M}}}_{g,n})$$for$$k = 13$$,$$14$$and$$15$$. We also show that$$H^4({\overline {\mathcal {M}}}_{g,n})$$is generated by tautological classes for allgandn, confirming a prediction of Arbarello and Cornalba from the 1990s. In order to establish the final base cases needed for the inductive proofs of our main results, we use Mukai’s construction of canonically embedded pentagonal curves of genus 7 as linear sections of an orthogonal Grassmannian and a decomposition of the diagonal to show that the pure weight cohomology of$${\mathcal {M}}_{7,n}$$is generated by algebraic cycle classes, for$$n \leq 3$$.
more »
« less
Quantum K theory of Grassmannians, Wilson line operators and Schur bundles
Abstract We prove a ‘Whitney’ presentation, and a ‘Coulomb branch’ presentation, for the torus equivariant quantum K theory of the Grassmann manifold$$\mathrm {Gr}(k;n)$$, inspired from physics, and stated in an earlier paper. The first presentation is obtained by quantum deforming the product of the Hirzebruch$$\lambda _y$$classes of the tautological bundles. In physics, the$$\lambda _y$$classes arise as certain Wilson line operators. The second presentation is obtained from the Coulomb branch equations involving the partial derivatives of a twisted superpotential from supersymmetric gauge theory. This is closest to a presentation obtained by Gorbounov and Korff, utilizing integrable systems techniques. Algebraically, we relate the Coulomb and Whitney presentations utilizing transition matrices from the (equivariant) Grothendieck polynomials to the (equivariant) complete homogeneous symmetric polynomials. Along the way, we calculate K-theoretic Gromov-Witten invariants of wedge powers of the tautological bundles on$$\mathrm {Gr}(k;n)$$, using the ‘quantum=classical’ statement.
more »
« less
- PAR ID:
- 10654324
- Publisher / Repository:
- Forum of Mathematics Sigma
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 13
- ISSN:
- 2050-5094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Given a permutation statistic$$\operatorname {\mathrm {st}}$$, define its inverse statistic$$\operatorname {\mathrm {ist}}$$by. We give a general approach, based on the theory of symmetric functions, for finding the joint distribution of$$\operatorname {\mathrm {st}}_{1}$$and$$\operatorname {\mathrm {ist}}_{2}$$whenever$$\operatorname {\mathrm {st}}_{1}$$and$$\operatorname {\mathrm {st}}_{2}$$are descent statistics: permutation statistics that depend only on the descent composition. We apply this method to a number of descent statistics, including the descent number, the peak number, the left peak number, the number of up-down runs and the major index. Perhaps surprisingly, in many cases the polynomial giving the joint distribution of$$\operatorname {\mathrm {st}}_{1}$$and$$\operatorname {\mathrm {ist}}_{2}$$can be expressed as a simple sum involving products of the polynomials giving the (individual) distributions of$$\operatorname {\mathrm {st}}_{1}$$and$$\operatorname {\mathrm {st}}_{2}$$. Our work leads to a rederivation of Stanley’s generating function for doubly alternating permutations, as well as several conjectures concerning real-rootedness and$$\gamma $$-positivity.more » « less
-
Abstract Let$$\mathrm {R}$$be a real closed field. Given a closed and bounded semialgebraic set$$A \subset \mathrm {R}^n$$and semialgebraic continuous functions$$f,g:A \rightarrow \mathrm {R}$$such that$$f^{-1}(0) \subset g^{-1}(0)$$, there exist an integer$$N> 0$$and$$c \in \mathrm {R}$$such that the inequality (Łojasiewicz inequality)$$|g(x)|^N \le c \cdot |f(x)|$$holds for all$$x \in A$$. In this paper, we consider the case whenAis defined by a quantifier-free formula with atoms of the form$$P = 0, P>0, P \in \mathcal {P}$$for some finite subset of polynomials$$\mathcal {P} \subset \mathrm {R}[X_1,\ldots ,X_n]_{\leq d}$$, and the graphs of$$f,g$$are also defined by quantifier-free formulas with atoms of the form$$Q = 0, Q>0, Q \in \mathcal {Q}$$, for some finite set$$\mathcal {Q} \subset \mathrm {R}[X_1,\ldots ,X_n,Y]_{\leq d}$$. We prove that the Łojasiewicz exponent in this case is bounded by$$(8 d)^{2(n+7)}$$. Our bound depends ondandnbut is independent of the combinatorial parameters, namely the cardinalities of$$\mathcal {P}$$and$$\mathcal {Q}$$. The previous best-known upper bound in this generality appeared inP. Solernó, Effective Łojasiewicz Inequalities in Semi-Algebraic Geometry, Applicable Algebra in Engineering, Communication and Computing (1991)and depended on the sum of degrees of the polynomials defining$$A,f,g$$and thus implicitly on the cardinalities of$$\mathcal {P}$$and$$\mathcal {Q}$$. As a consequence, we improve the current best error bounds for polynomial systems under some conditions. Finally, we prove a version of Łojasiewicz inequality in polynomially bounded o-minimal structures. We prove the existence of a common upper bound on the Łojasiewicz exponent for certain combinatorially defined infinite (but not necessarily definable) families of pairs of functions. This improves a prior result of Chris Miller (C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic (1994)).more » « less
-
Abstract Let$$P_1, \ldots , P_m \in \mathbb {K}[\mathrm {y}]$$be polynomials with distinct degrees, no constant terms and coefficients in a general local field$$\mathbb {K}$$. We give a quantitative count of the number of polynomial progressions$$x, x+P_1(y), \ldots , x + P_m(y)$$lying in a set$$S\subseteq \mathbb {K}$$of positive density. The proof relies on a general$$L^{\infty }$$inverse theorem which is of independent interest. This inverse theorem implies a Sobolev improving estimate for multilinear polynomial averaging operators which in turn implies our quantitative estimate for polynomial progressions. This general Sobolev inequality has the potential to be applied in a number of problems in real, complex andp-adic analysis.more » « less
-
Abstract We prove that the rational cohomology group$$H^{11}(\overline {\mathcal {M}}_{g,n})$$vanishes unless$$g = 1$$and$$n \geq 11$$. We show furthermore that$$H^k(\overline {\mathcal {M}}_{g,n})$$is pure Hodge–Tate for all even$$k \leq 12$$and deduce that$$\# \overline {\mathcal {M}}_{g,n}(\mathbb {F}_q)$$is surprisingly well approximated by a polynomial inq. In addition, we use$$H^{11}(\overline {\mathcal {M}}_{1,11})$$and its image under Gysin push-forward for tautological maps to produce many new examples of moduli spaces of stable curves with nonvanishing odd cohomology and nontautological algebraic cycle classes in Chow cohomology.more » « less
An official website of the United States government

