skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Paleoclimatic implications of glacial fluctuations in the Sierra Nevada del Cocuy, northern Andes, Colombia, during the Lateglacial and Holocene
The reconstruction of former mountain glaciers from geomorphic mapping and cosmogenic-nuclide surface exposure dating provides a unique opportunity to infer patterns of past terrestrial climate variability. Tropical mountain glaciers are particularly valuable as there are comparatively few terrestrial climate proxies at equatorial latitudes relative to higher latitudes. As the single largest climate zone on Earth, the tropics play an outsized role in mediating global climate via the ocean-atmosphere transfer of latent heat and water vapor. Nonetheless, there remains a persistent gap in our understanding of how the tropics influenced – or were influenced by – the high-magnitude climate shifts of the Late Pleistocene, and whether this high-energy region simply responded to extratropical forcing or was itself a driver of global climatic change. To help address this knowledge gap, we analyzed geologic evidence for past glacial fluctuations in three adjacent valleys in the Sierra Nevada del Cocuy, the highest subrange of the Eastern Cordillera in the Colombian Andes, to provide a terrestrial record of atmospheric temperature during the latter part of Termination 1. Coupled with geomorphic mapping and paleo-snowline reconstructions, our beryllium-10 glacial chronology indicates that glaciers in the humid inner tropics underwent pronounced growth and gradual decay during the Antarctic Cold Reversal (14.5–12.8 ka) and Younger Dryas (12.8–11.7 ka) periods, respectively, following a trend that, according to directly dated moraine records from throughout both polar hemispheres, appears to have been global. While the specific mechanism(s) behind this large-scale behavior remains to be corroborated, we revisit the hypothesis that ocean atmosphere heat transfer and water vapor flux are key drivers of abrupt Lateglacial temperature fluctuations. Subsequent to the Lateglacial, deglaciation of the Sierra Nevada del Cocuy accelerated during the Early Holocene, a pattern also observed in other tropical glacier records. More recently, the magnitude of snowline rise and glacier retreat over the last two centuries supports the view that modern tropospheric warming is anomalously strong at least relative to the last ~16,000 years.  more » « less
Award ID(s):
2022727
PAR ID:
10655005
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Quaternary Science Reviews
Volume:
363
Issue:
C
ISSN:
0277-3791
Page Range / eLocation ID:
109458
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atmospheric greenhouse gas concentrations are thought to have synchronized global temperatures during Pleistocene glacial–interglacial cycles, yet their impact relative to changes in high-latitude insolation and ice-sheet extent remains poorly constrained. Here, we use tropical glacial fluctuations to assess the timing of low-latitude temperature changes relative to global climate forcings. We report 10 Be ages of moraines in tropical East Africa and South America and show that glaciers reached their maxima at ~29 to 20 ka, during the global Last Glacial Maximum. Tropical glacial recession was underway by 20 ka, before the rapid CO 2 rise at ~18.2 ka. This “early” tropical warming was influenced by rising high-latitude insolation and coincident ice-sheet recession in both polar regions, which lowered the meridional thermal gradient and reduced tropical heat export to the high latitudes. 
    more » « less
  2. Abstract Climate is currently warming due to anthropogenic impact on the Earth’s atmosphere. To better understand the processes and feedbacks within the climate system that underlie this accelerating warming trend, it is useful to examine past periods of abrupt climate change that were driven by natural forcings. Glaciers provide an excellent natural laboratory for reconstructing the climate of the past as they respond sensitively to climate oscillations. Therefore, we study glacier systems and their behavior during the transition from colder to warmer climate phases, focusing on the period between 15 and 10 ka. Using a combination of geomorphological mapping and beryllium-10 surface exposure dating, we reconstruct ice extents in two glaciated valleys of the Silvretta Massif in the Austrian Alps. The mountain glacier record shows that general deglaciation after the Last Glacial Maximum (LGM) was repeatedly interrupted by glacier stabilization or readvance, perhaps during the Oldest Dryas to Bølling transition (landform age: 14.4 ± 1.0 ka) and certainly during the Younger Dryas (YD; 12.9–11.7 ka) and the Early Holocene (EH; 12–10 ka). The oldest landform age indicates a lateral ice margin that postdates the ‘Gschnitz’ stadial (ca. 17–16 ka) and predates the YD. It shows that local inner-alpine glaciers were more extensive until the onset of the Bølling warm phase (ca. 14.6 ka), or possibly even into the Bølling than during the subsequent YD. The second age group, ca. 80 m below the (pre-)Bølling ice margin, indicates glacier extents during the YD cold phase and captures the spatial and temporal fine structure of glacier retreat during this period. The ice surface lowered approximately 50–60 m through the YD, which is indicative of milder climate conditions at the end of the YD compared to its beginning. Finally, the third age group falls into a period of more substantial warming, the YD–EH transition, and shows discontinuous glacier retreat during the glacial to interglacial transition. The new geochronologies synthesized with pre-existing moraine records from the Silvretta Massif evidence multiple cold phases that punctuated the general post-LGM warming trend and illustrate the sensitive response of Silvretta glaciers to abrupt climate oscillations in the past. 
    more » « less
  3. The Northwest Coast of North America stretches 4000 km from Bering Strait to Washington State. Here we review the history of glaciation, sea level, oceanography, and climate along the Northwest Coast and in the subarctic Pacific Ocean during the Last Glacial Maximum and deglaciation. The period of interest is Marine Isotope Stage 2 between ca. 29,000 calendar years ago (29 ka) and 11,700 calendar years ago (11.7 ka). The glacial history of the Northwest Coast involved multiple glacial systems responding independently to latitudinal variations in climate caused by changes in the North American ice sheets and in the tropical ocean-atmosphere system. Glaciers reached their maximum extents 1–5 kyrs later along the Northwest Coast than did large sectors of the Laurentide and Fennoscandian Ice Sheets. Local, Last Glacial Maxima were reached in a time-transgressive, north to south sequence between southwestern Alaska and Puget Sound. The history of relative sea level along the Northwest Coast during Marine Isotope Stage 2 was complex because of rapid isostatic adjustments by a thin lithosphere to these time-transgressive glacial fluctuations. Multiple lines of evidence suggest Bering Strait was first flooded by the sea after 11 ka and that it probably did not assume its present-day oceanographic functions until after 9 ka. The coldest intervals occurred during Heinrich Event 2 (ca. 26–23.5 ka), again between ca. 23 and 21.5 ka, and during Heinrich Event 1 (ca. 18–15 ka). During these times, mean annual sea surface temperatures cooled by 5o to 8o C in the Gulf of Alaska, and glacial equilibrium-line altitudes fell below present sea level in southern Alaska and along the Aleutian Island chain. Sea ice episodically expanded across the subarctic Pacific in winter. Oceanographic changes in the Gulf of Alaska tracked variations in the vigor of the Asian Summer Monsoon. The deglaciation of the Northwest Coast may have served as the trigger for global climate changes during deglaciation. Starting ca. 21 ka, marine-based glaciers there were increasingly destabilized by rising eustatic sea level and influxes of freshwater and heat associated with the rejuvenation of the Asian Summer Monsoon. Rapid retreat of marine-based glaciers began ca. 19 ka and released large numbers of ice bergs and vast amounts of freshwater into the Northeast Pacific. Resultant cooling of the North Pacific may have been teleconnected to the North Atlantic through the atmosphere, where it slowed Atlantic Meridional Overturning Circulation and initiated the global effects of Heinrich Event 1, ca. 18–15 ka. During the Younger Dryas, ca. 12.8–11.7 ka, mean annual sea surface temperatures were 4o to 6o C cooler than today in the Gulf of Alaska, and sea ice again expanded across the subarctic Pacific in winter. Conditions of extreme seasonality characterized by cold, dry winters and warm, steadily ameliorating summers caused by the southward diversion of the Aleutian Low in winter may explain the previously enigmatic records of Younger Dryas climate along the Northwest Coast. 
    more » « less
  4. Waitt RB, Thackray GD (Ed.)
    Mountain glacier moraine sequences and their chronologies allow us to evaluate the timing and climate conditions that underpin changes in the equilibrium line altitudes (ELAs), which can provide valuable information on the paleoclimatology of understudied regions such as tropical East Africa. However, moraine sequences are inherently discontinuous, and the precise climate conditions that they represent can be ambiguous due to the sensitivity of mountain glaciers to temperature, precipitation, and other environmental variables. Here, we used a two-dimensional (2-D) iceflow and mass-balance model to simulate glacier extents and ELAs in the Rwenzori Mountains in East Africa over the past 31,000 yr (31 k.y.), including the Last Glacial Maximum (LGM), late glacial period, and the Holocene Epoch. We drove the glacier model with two independent, continuous temperature reconstructions to simulate possible glacier length changes through time. Model input paleoclimate values came from branched glycerol dialkyl glycerol tetraether (brGDGT) temperature reconstructions from alpine lakes on Mount Kenya for the last ~31 k.y., and precipitation reconstructions for the LGM came from various East African locations. We then compared the simulated fluctuations with the positions and ages (where known) of the Rwenzori moraines. The simulated glacier extents reached within 1.1 km of the dated LGM moraines in one valley (93% of the full LGM extent) when forced by the brGDGT temperature reconstructions (maximum cooling of 6.1 °C) and a decrease in precipitation (-10% than modern amounts). These simulations suggest that the Rwenzori glaciers required a cooling of at least 6.1 °C to reach the dated LGM moraines. Based on the model output, we predict an age of 12–11 ka for moraines located halfway between the LGM and modern glacier extents. We also predict ice-free conditions in the Rwenzori Mountains for most of the early to middle Holocene, followed by a late Holocene glacier readvance within the last 2000 yr. 
    more » « less
  5. Atmospheric water vapor is predominately sourced from the tropics, such that characterizing the link between the tropical water cycle and global climate is of critical importance. Studies of central Andean climate from Lake Junín (11 °S, Peru) show that tropical glacial extent tracks global ice volume at a ~100 ka periodicity for the last 6 glacial cycles, indicating a tight coupling between tropical water balance and high latitude climate. However, it can be difficult to decouple temperature, precipitation, and water balance histories from records of glacial extent, especially for older intervals. In this work, we focus on one such interval, MIS 15 (621–563 ka), when the connections between tropical Andean water balance and global climate seem different than the last glacial cycle. Globally, MIS 15 was a weak interglacial, with cool temperatures and low GHG concentrations, however, the Lake Junín glacial record suggests an amplified hydroclimate response to this interglacial, stronger than any other over the last 700 ka. Causes for this apparent tropical amplification may be due to large, precession-paced changes in meridional insolation gradients that exceed other interglacials owning to enhanced orbital eccentricity. Given that the role of precession on South American monsoon strength over the last glacial cycle is well established, we hypothesize that monsoon strength may have been highly variable during MIS 15 and forced changes in central Andean water balance and glacial extent. To test this, we reconstructed temperature and evaporation histories using carbonate clumped and triple oxygen isotopes of Lake Junín sediments. Preliminary results suggest temperatures were relatively stable, but possibly lower than both the present and Holocene, consistent with cool global climate at that time. Triple oxygen isotope values vary substantially, indicating massive swings in lake hydrology, between open and (nearly?) closed basin hydrology on a ~12 ka cycle that exactly match insolation variations. From this work, we conclude that hydrologic change in the central Andes was rapid and extreme during MIS 15, owning to profound changes in monsoon strength. Given that monsoons in other sectors are also sensitive to insolation changes, our work could suggest pervasive hydrologic variability throughout the tropics at this time. 
    more » « less