Agricultural activities have been recognized as an important driver of land cover and land use change (LCLUC) and have significantly impacted the ecosystem feedback to climate by altering land surface properties. A reliable historical cropland distribution dataset is crucial for understanding and quantifying the legacy effects of agriculture-related LCLUC. While several LCLUC datasets have the potential to depict cropland patterns in the conterminous US, there remains a dearth of a relatively high-resolution datasets with crop type details over a long period. To address this gap, we reconstructed historical cropland density and crop type maps from 1850 to 2021 at a resolution of 1 km × 1 km by integrating county-level crop-specific inventory datasets, census data, and gridded LCLUC products. Different from other databases, we tracked the planting area dynamics of all crops in the US, excluding idle and fallow farm land and cropland pasture. The results showed that the crop acreages for nine major crops derived from our map products are highly consistent with the county-level inventory data, with a residual less than 0.2×103 ha (0.2 kha) in most counties (>75 %) during the entire study period. Temporally, the US total crop acreage has increased by 118×106 ha (118 Mha) from 1850 to 2021, primarily driven by corn (30 Mha) and soybean (35 Mha). Spatially, the hot spots of cropland distribution shifted from the Eastern US to the Midwest and the Great Plains, and the dominant crop types (corn and soybean) expanded northwestward. Moreover, we found that the US cropping diversity experienced a significant increase from the 1850s to the 1960s, followed by a dramatic decline in the recent 6 decades under intensified agriculture. Generally, this newly developed dataset could facilitate spatial data development, with respect to delineating crop-specific management practices, and enable the quantification of cropland change impacts on the environment. Annual cropland density and crop type maps are available at https://doi.org/10.6084/m9.figshare.22822838.v2 (Ye et al., 2023).
more »
« less
Innovations through crop switching happen on the diverse margins of US agriculture
Crop switching, in which farmers grow a crop that is novel to a given field, can help agricultural systems adapt to changing environmental, cultural, and market forces. Yet while regional crop production trends receive significant attention, relatively little is known about the local-scale crop switching that underlies these macrotrends. We characterized local crop-switching patterns across the United States using the US Department of Agriculture (USDA) Cropland Data Layer, an annual time series of high resolution (30 m pixel size) remote-sensed cropland data from 2008 to 2022. We found that at multiple spatial scales, crop switching was most common in sparsely cultivated landscapes and in landscapes with high crop diversity, whereas it was low in homogeneous, highly agricultural areas such as the Midwestern corn belt, suggesting a number of potential social and economic mechanisms influencing farmers’ crop choices. Crop-switching rates were high overall, occurring on more than 6% of all US cropland in the average year. Applying a framework that classified crop switches based on their temporal novelty (crop introduction versus discontinuation), spatial novelty (locally divergent versus convergent switching), and categorical novelty (transformative versus incremental switching), we found distinct spatial patterns for these three novelty dimensions, indicating a dynamic and multifaceted set of cropping changes across US farms. Collectively, these results suggest that innovation through crop switching is playing out very differently in various parts of the country, with potentially significant implications for the resilience of agricultural systems to changes in climate and other systemic trends.
more »
« less
- Award ID(s):
- 2019470
- PAR ID:
- 10655889
- Publisher / Repository:
- Proceedings of the National Academy
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 42
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate change is impacting global crop productivity, and agricultural land suitability is predicted to significantly shift in the future. Responses to changing conditions and increasing yield variability can range from altered management strategies to outright land use conversions that may have significant environmental and socioeconomic ramifications. However, the extent to which agricultural land use changes in response to variations in climate is unclear at larger scales. Improved understanding of these dynamics is important since land use changes will have consequences not only for food security but also for ecosystem health, biodiversity, carbon storage, and regional and global climate. In this study, we combine land use products derived from the Moderate Resolution Imaging Spectroradiometer with climate reanalysis data from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 to analyze correspondence between changes in cropland and changes in temperature and water availability from 2001 to 2018. While climate trends explained little of the variability in land cover changes, increasing temperature, extreme heat days, potential evaporation, and drought severity were associated with higher levels of cropland loss. These patterns were strongest in regions with more cropland change, and generally reflected underlying climate suitability—they were amplified in hotter and drier regions, and reversed direction in cooler and wetter regions. At national scales, climate response patterns varied significantly, reflecting the importance of socioeconomic, political, and geographic factors, as well as differences in adaptation strategies. This global-scale analysis does not attempt to explain local mechanisms of change but identifies climate-cropland patterns that exist in aggregate and may be hard to perceive at local scales. It is intended to supplement regional studies, providing further context for locally-observed phenomena and highlighting patterns that require further analysis.more » « less
-
Abstract. Understanding and assessing the spatiotemporal patterns in crop-specific phosphorus (P) fertilizer management are crucial for enhancing crop yield and mitigating environmental problems. The existing P fertilizer dataset, derived from sales data, depicts an average application rate over total cropland at the county level but overlooks cross-crop variations. Conversely, the survey-based dataset offers crop-specific application details at the state level yet lacks inter-state variability. By reconciling these two datasets, we developed long-term gridded maps to characterize crop-specific P fertilizer application rates, timing, and methods across the contiguous US at a resolution of 4 km × 4 km from 1850 to 2022. We found that P fertilizer application rate over fertilized areas in the US increased from 0.9 g P m−2 yr−1 in 1940 to 1.9 g P m−2 yr−1 in 2022, with substantial variations among crops. However, approximately 40 % of cropland nationwide has remained unfertilized in the recent decade. The hotspots for P fertilizer use have shifted from the southeastern and eastern US to the Midwest and the Great Plains over the past century, reflecting changes in cropland area, crop choices, and P fertilizer use across different crops. Pre-planting (fall and spring) and broadcast application are prevalent among corn, soybean, and cotton in the Midwest and the Southeast, indicating a high P loss risk in these regions. In contrast, wheat and barley in the Great Plains receive the most intensive P fertilization at planting and via non-broadcast application. The P fertilizer management dataset developed in this study can advance our comprehension of agricultural P budgets and facilitate the refinement of best P fertilizer management practices to optimize crop yield and to reduce P loss. Datasets are available at https://doi.org/10.5281/zenodo.10700821 (Cao et al., 2024).more » « less
-
Abstract The United States is a major producer and exporter of agricultural goods, fulfilling global demands for food, fiber, and fuel while generating substantial economic benefits. Agriculture in the U.S. not only dominates land use but also ranks as the largest water-consuming sector. High-resolution cropland mapping and insights into cultivation trends are essential to enhance sustainable management of land and water resources. Existing data sources present a trade-off between temporal breadth and spatial resolution, leading to gaps in detailed geographic crop distribution. To bridge this gap, we adopted a data-fusion methodology that leverages the advantages of various data sources, including county-level data from the U.S. Department of Agriculture, along with several gridded land use datasets. This approach enabled us to create annual maps, termed HarvestGRID, of irrigated and harvested areas for 30 key crops across the U.S. from 1981 to 2019 at a resolution of 2.5 arc minutes. Over the past four decades, irrigated harvested area has remained relatively stable nationally; however, several western states exhibit a declining trend, while some eastern states show an upward trend. Notably, more than 50% of the irrigated land in the U.S. lies above three major aquifers: the High Plains, Central Valley, and Mississippi Embayment Aquifers. We assessed the accuracy of HarvestGRID by comparing it with other large-scale gridded cropland databases, identifying both consistencies and discrepancies across different years, regions, and crops. This dataset is pivotal for analyzing long-term cropland use patterns and supports the advancement of more sustainable agricultural practices.more » « less
-
Abstract ObjectivesHuman responses to climate variation have a rich anthropological history. However, much less is known about how people living in small‐scale societies perceive climate change, and what climate data are useful in predicting food production at a scale that affects daily lives. MethodsWe use longitudinal ethnographic interviews and economic data to first ask what aspects of climate variation affect the agricultural cycle and food production for Yucatec Maya farmers. Sixty years of high‐resolution meteorological data and harvest assessments are then used to detect the scale at which climate data predict good and bad crop yields, and to analyze long‐term changes in climate variables critical to food production. ResultsWe find that (a) only local, daily precipitation closely fits the climate pattern described by farmers. Other temporal (annual and monthly) scales miss key information about what farmers find important to successful harvests; (b) at both community‐ and municipal‐levels, heavy late‐season rains associated with tropical storms have the greatest negative impact on crop yields; and (c) in contrast to long‐term patterns from regional and state data, local measures show an increase in rainfall during the late growing season, indicating that fine‐grained data are needed to make accurate inferences about climate trends. ConclusionOur findings highlight the importance to define climate variables at scales appropriate to human behavior. Course‐grained annual, monthly, national, and state‐level data tell us little about climate attributes pertinent to farmers and food production. However, high‐resolution daily, local precipitation data do capture how climate variation shapes food production.more » « less
An official website of the United States government

