Abstract Given a suitable solutionV(t, x) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data$$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$ . Our conditions onVdo include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$ satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.https://doi.org/10.1088/1361-6544/ac37f5) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4) where$$V\equiv 0$$ . In that setting, it is known that$$H^{-1}(\mathbb {R})$$ is sharp in the class of$$H^s(\mathbb {R})$$ spaces.
more »
« less
Reducibility Without KAM
Abstract We prove rotations-reducibility for close to constant quasi-periodic$$SL(2,\mathbb {R})$$ cocycles in one frequency in the finite regularity and smooth cases, and derive some applications to quasi-periodic Schrödinger operators.
more »
« less
- Award ID(s):
- 2101464
- PAR ID:
- 10656070
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Communications in Mathematical Physics
- Volume:
- 405
- Issue:
- 11
- ISSN:
- 0010-3616
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper, we present counterexamples to maximal$$L^p$$ -regularity for a parabolic PDE. The example is a second-order operator in divergence form with space and time-dependent coefficients. It is well-known from Lions’ theory that such operators admit maximal$$L^2$$ -regularity on$$H^{-1}$$ under a coercivity condition on the coefficients, and without any regularity conditions in time and space. We show that in general one cannot expect maximal$$L^p$$ -regularity on$$H^{-1}(\mathbb {R}^d)$$ or$$L^2$$ -regularity on$$L^2(\mathbb {R}^d)$$ .more » « less
-
Abstract In this paper we prove a higher dimensional analogue of Carleson’s$$\varepsilon ^{2}$$ conjecture. Given two arbitrary disjoint Borel sets$$\Omega ^{+},\Omega ^{-}\subset \mathbb{R}^{n+1}$$ , and$$x\in \mathbb{R}^{n+1}$$ ,$$r>0$$ , we denote$$ \varepsilon _{n}(x,r) := \frac{1}{r^{n}}\, \inf _{H^{+}} \mathcal{H}^{n} \left ( ((\partial B(x,r)\cap H^{+}) \setminus \Omega ^{+}) \cup (( \partial B(x,r)\cap H^{-}) \setminus \Omega ^{-})\right ), $$ where the infimum is taken over all open affine half-spaces$$H^{+}$$ such that$$x \in \partial H^{+}$$ and we define$$H^{-}= \mathbb{R}^{n+1} \setminus \overline{H^{+}}$$ . Our first main result asserts that the set of points$$x\in \mathbb{R}^{n+1}$$ where$$ \int _{0}^{1} \varepsilon _{n}(x,r)^{2} \, \frac{dr}{r}< \infty $$ is$$n$$ -rectifiable. For our second main result we assume that$$\Omega ^{+}$$ ,$$\Omega ^{-}$$ are open and that$$\Omega ^{+}\cup \Omega ^{-}$$ satisfies the capacity density condition. For each$$x \in \partial \Omega ^{+} \cup \partial \Omega ^{-}$$ and$$r>0$$ , we denote by$$\alpha ^{\pm }(x,r)$$ the characteristic constant of the (spherical) open sets$$\Omega ^{\pm }\cap \partial B(x,r)$$ . We show that, up to a set of$$\mathcal{H}^{n}$$ measure zero,$$x$$ is a tangent point for both$$\partial \Omega ^{+}$$ and$$\partial \Omega ^{-}$$ if and only if$$ \int _{0}^{1} \min (1,\alpha ^{+}(x,r) + \alpha ^{-}(x,r) -2) \frac{dr}{r} < \infty . $$ The first result is new even in the plane and the second one improves and extends to higher dimensions the$$\varepsilon ^{2}$$ conjecture of Carleson.more » « less
-
Abstract Consider two half-spaces$$H_1^+$$ and$$H_2^+$$ in$${\mathbb {R}}^{d+1}$$ whose bounding hyperplanes$$H_1$$ and$$H_2$$ are orthogonal and pass through the origin. The intersection$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ is a spherical convex subset of thed-dimensional unit sphere$${\mathbb {S}}^d$$ , which contains a great subsphere of dimension$$d-2$$ and is called a spherical wedge. Choosenindependent random points uniformly at random on$${\mathbb {S}}_{2,+}^d$$ and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$$\log n$$ . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$${\mathbb {S}}_{2,+}^d$$ . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere.more » « less
-
Abstract We construct a new one-parameter family, indexed by$$\epsilon $$ , of two-ended, spatially-homogeneous black hole interiors solving the Einstein–Maxwell–Klein–Gordon equations with a (possibly zero) cosmological constant$$\Lambda $$ and bifurcating off a Reissner–Nordström-(dS/AdS) interior ($$\epsilon =0$$ ). For all small$$\epsilon \ne 0$$ , we prove that, although the black hole is charged, its terminal boundary is an everywhere-spacelikeKasner singularity foliated by spheres of zero radiusr. Moreover, smaller perturbations (i.e. smaller$$|\epsilon |$$ ) aremore singular than larger ones, in the sense that the Hawking mass and the curvature blow up following a power law of the form$$r^{-O(\epsilon ^{-2})}$$ at the singularity$$\{r=0\}$$ . This unusual property originates from a dynamical phenomenon—violent nonlinear collapse—caused by the almost formation of a Cauchy horizon to the past of the spacelike singularity$$\{r=0\}$$ . This phenomenon was previously described numerically in the physics literature and referred to as “the collapse of the Einstein–Rosen bridge”. While we cover all values of$$\Lambda \in \mathbb {R}$$ , the case$$\Lambda <0$$ is of particular significance to the AdS/CFT correspondence. Our result can also be viewed in general as a first step towards the understanding of the interior of hairy black holes.more » « less
An official website of the United States government

