skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GrokWalks: A Portable Virtual Reality Platform to Facilitate Studying Driver-Pedestrian Interactions
Driving simulators are vital for human-centered automotive research, offering safe, replicable environments for studying human interaction with transportation technology interfaces and behaviors. However, traditional driving simulators are not well-suited to studying traffic interactions with various degrees of freedom in a way that allows for the capture of nuances in implicit and explicit interactions, e.g. gestures, body language, and movement. We developed a multi-participant virtual reality (VR) driving simulation platform to study these interactions. This portable system supports cross-cultural experiments by modeling diverse scenarios, generating analyzable data, and capturing human behaviors in traffic. Our interactive demo allows participants to experience roles as drivers or pedestrians in a shared virtual environment, with the goal of providing a hands-on experience with this open-source VR simulator and demonstrating its affordability and scalability for traffic interaction studies to researchers and practitioners.  more » « less
Award ID(s):
2212431
PAR ID:
10656928
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
284 to 288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Simulators are an essential tool for behavioural and interaction research on driving, due to the safety, cost, and experimental control issues of on-road driving experiments. The most advanced simulators use expensive 360 degree projections systems to ensure visual fidelity, full field of view, and immersion. However, similar visual fidelity can be achieved affordably using a virtual reality (VR) based visual interface. We present DReyeVR, an open-source VR based driving simulator platform designed with behavioural and interaction research priorities in mind. DReyeVR (read ''driver'') is based on Unreal Engine and the CARLA autonomous vehicle simulator and has features such as eye tracking, a functional driving heads-up display (HUD) and vehicle audio, custom definable routes and traffic scenarios, experimental logging, replay capabilities, and compatibility with ROS. We describe the hardware required to deploy this simulator for under 5000 USD, much cheaper than commercially available simulators. Finally, we describe how DReyeVR may be leveraged to answer an interaction research question in an example scenario. DReyeVR is open-source at this url: https://github.com/HARPLab/DReyeVR 
    more » « less
  2. Immersive Virtual Reality (VR) applications demand low network latency, large bandwidth, and substantial computational resources. Despite significant progress in addressing these challenges, creating Distributed VR environments remains complex. Existing VR deployments are predominantly centralized. Extending VR to a distributed setup requires solving scalability challenges of the network support needed for VR servers distributed across a network. In particular, the scale of traffic between distributed VR servers and the interaction of this VR traffic's size with various features of the VR applications are unexplored. In this study, we present and evaluate a distributed multi-server VR environment based on Mozilla's popular open-source platform, Hubs, on a local area network (LAN). By conducting traffic measurements, we evaluate how the network traffic volume to support such distributed VR setups may evolve. Our work assesses the feasibility of creating such distributed VR environments. We find that the inter-server traffic exhibits logarithmic increase with respect to the client count when the clients make human-like movements, pointing to the scalability potential of Distributed VR environments. Additionally, the study lays the foundation for future optimizations, aiming to enhance the distributed VR experience for users. 
    more » « less
  3. null (Ed.)
    Virtual reality (VR) systems have been increasingly used in recent years in various domains, such as education and training. Presence, which can be described as ‘the sense of being there’ is one of the most important user experience aspects in VR. There are several components, which may affect the level of presence, such as interaction, visual fidelity, and auditory cues. In recent years, a significant effort has been put into increasing the sense of presence in VR. This study focuses on improving user experience in VR by increasing presence through increased interaction fidelity and enhanced illusions. Interaction in real life includes mutual and bidirectional encounters between two or more individuals through shared tangible objects. However, the majority of VR interaction to date has been unidirectional. This research aims to bridge this gap by enabling bidirectional mutual tangible embodied interactions between human users and virtual characters in world-fixed VR through real-virtual shared objects that extend from virtual world into the real world. I hypothesize that the proposed novel interaction will shrink the boundary between the real and virtual worlds (through virtual characters that affect the physical world), increase the seamlessness of the VR system (enhance the illusion) and the fidelity of interaction, and increase the level of presence and social presence, enjoyment and engagement. This paper includes the motivation, design and development details of the proposed novel world-fixed VR system along with future directions. 
    more » « less
  4. Social scientists have argued that autonomous vehicles (AVs) need to act as effective social agents; they have to respond implicitly to other drivers’ behaviors as human drivers would. In this paper, we investigate how contingent driving behavior in AVs influences human drivers’ experiences. We compared three algorithmic driving models: one trained on human driving data that responds to interactions (a familiar contingent behavior) and two artificial models that intend to either always-yield or never-yield regardless of how the interaction unfolds (non-contingent behaviors). Results show a statistically significant relationship between familiar contingent behavior and positive driver experiences, reducing stress while promoting the decisive interactions that mitigate driver hesitance. The direct relationship between familiar contingency and positive experience indicates that AVs should incorporate socially familiar driving patterns through contextually-adaptive algorithms to improve the chances of successful deployment and acceptance in mixed human-AV traffic environments. 
    more » « less
  5. We propose a demonstration of the Social Environment for Autonomous Navigation with Virtual Reality (VR) for advancing research in Human-Robot Interaction. In our demonstration, a user controls a virtual avatar in simulation and performs directed navigation tasks with a mobile robot in a warehouse environment. Our demonstration shows how researchers can leverage the immersive nature of VR to study robot navigation from a user-centered perspective in densely populated environments while avoiding physical safety concerns common with operating robots in the real world. This is important for studying interactions with robots driven by algorithms that are early in their development lifecycle. 
    more » « less