skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 7, 2026

Title: Bonding-imposed crystallization of 1D nanostructures based on a luminescent and anisotropic 2D van der Waals crystal
Physical states in nanoscale solids are tied to their crystalline order, morphology, and size. However, deterministically accessing different nanocrystal morphologies from a single phase usually involves complex synthetic routes, catalysts, or multi-step lithographic techniques. Here, we demonstrate the catalyst-free synthesis of nanosheets and nanowires based on the luminescent 2D van der Waals (vdW) phase, GaTe, as a model phase that manifests atomic precision and a highly anisotropic quasi-1D substructure. We program the size and morphology of the resulting nanostructures by varying the relative rates of precursor deposition and diffusion, achieving dense, uniform, and widespread growth. Ultrathin nanowires resulting from this synthesis exhibit strikingly enhanced low-temperature luminescence with narrow near-infrared (NIR) emission bandwidths. These spectral characteristics arise from defect-bound states confined within a nanowire morphology that acts as a deep sub-wavelength optical cavity, making them suitable as optical emitters with small footprints either as stand-alone structures or coupled with other vdW crystals.  more » « less
Award ID(s):
2340918
PAR ID:
10657896
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
ChemRxiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nanowires of layered van der Waals (vdW) crystals are of interest due to structural characteristics and emerging properties that have no equivalent in conventional 3D crystalline nanostructures. Here, vapor-liquid-solid growth, optoelectronics, and photonics of GaS vdW nanowires are studied. Electron microscopy and diffraction demonstrate the formation of high-quality layered nanostructures with different vdW layer orientation. GaS nanowires with vdW stacking perpendicular to the wire axis have ribbon-like morphologies with lengths up to 100 micrometers and uniform width. Wires with axial layer stacking show tapered morphologies and a corrugated surface due to twinning between successive few-layer GaS sheets. Layered GaS nanowires are excellent wide-bandgap optoelectronic materials with Eg = 2.65 eV determined by single-nanowire absorption measurements. Nanometer-scale spectroscopy on individual nanowires shows intense blue band-edge luminescence along with longer wavelength emissions due to transitions between gap states, and photonic properties such as interference of confined waveguide modes propagating within the nanowires. The combined results show promise for applications in electronics, optoelectronics and photonics, as well as photo- or electrocatalysis owing to a high density of reactive edge sites, and intercalation-type energy storage benefitting from facile access to the interlayer vdW gaps. 
    more » « less
  2. Immediately after the demonstration of the high-quality electronic properties in various two dimensional (2D) van der Waals (vdW) crystals fabricated with mechanical exfoliation, many methods have been reported to explore and control large scale fabrications. Comparing with recent advancements in fabricating 2D atomic layered crystals, large scale production of one dimensional (1D) nanowires with thickness approaching molecular or atomic level still remains stagnant. Here, we demonstrate the high yield production of a 1D vdW material, semiconducting Ta2Pd3Se8 nanowires, by means of liquid-phase exfoliation. The thinnest nanowire we have readily achieved is around 1 nm, corresponding to a bundle of one or two molecular ribbons. Transmission electron microscopy (TEM) and transport measurements reveal the as-fabricated Ta2Pd3Se8 nanowires exhibit unexpected high crystallinity and chemical stability. Our low-frequency Raman spectroscopy reveals clear evidence of the existing of weak inter-ribbon bindings. The fabricated nanowire transistors exhibit high switching performance and promising applications for photodetectors. 
    more » « less
  3. null (Ed.)
    Gallium oxide (Ga 2 O 3 ) and its most stable modification, monoclinic β-Ga 2 O 3 , is emerging as a primary material for power electronic devices, gas sensors and optical devices due to a high breakdown voltage, large bandgap, and optical transparency combined with electrical conductivity. Growth of β-Ga 2 O 3 is challenging and most methods require very high temperatures. Nanowires of β-Ga 2 O 3 have been investigated extensively as they might be advantageous for devices such as nanowire field effect transistors, and gas sensors benefiting from a large surface to volume ratio, among others. Here, we report a synthesis approach using a sulfide precursor (Ga 2 S 3 ), which requires relatively low substrate temperatures and short growth times to produce high-quality single crystalline β-Ga 2 O 3 nanowires in high yields. Even though Au- or Ag-rich nanoparticles are invariably observed at the nanowire tips, they merely serve as nucleation seeds while the nanowire growth proceeds via supply and local oxidation of gallium at the substrate interface. Absorption and cathodoluminescence spectroscopy on individual nanowires confirms a wide bandgap of 4.63 eV and strong luminescence with a maximum ∼2.7 eV. Determining the growth process, morphology, composition and optoelectronic properties on the single nanowire level is key to further application of the β-Ga 2 O 3 nanowires in electronic devices. 
    more » « less
  4. Abstract The highly intricate structures of biological systems make the precise probing of biological behaviors at the cellular‐level particularly difficult. As an advanced toolset capable of exploring diverse biointerfaces, high‐aspect‐ratio nanowires stand out with their unique mechanical, optical, and electrical properties. Specifically, semiconductor nanowires show much promise in their tunability and feasibility for synthesis and fabrication. Thus far, semiconductor nanowires have shown favorable results in deciphering biological communications and translating this cellular language through the nanowire‐based biointerfaces. In this perspective, the synthesis and fabrication methods for different kinds of nanowires and nanowire‐based structures are first surveyed. Next, several cellular‐level nanowire‐enabled applications in biophysical dynamics probing, physiological or biochemical sensing, and biological activity modulation are highlighted. Then, the progress of functionalized nanowires in drug delivery and bioenergy production is reviewed. Finally, the current limitations of nanowires and an outlook into the next generation of nanowire‐based devices at the biointerfaces are concluded. 
    more » « less
  5. Abstract Electromagnetic hyperbolicity has driven key functionalities in nanophotonics, including super-resolution imaging, efficient energy control, and extreme light manipulation. Central to these advances are hyperbolic polaritons—nanometer-scale light-matter waves—spanning multiple energy-momentum dispersion orders with distinct mode profiles and incrementally high optical momenta. In this work, we report the mode conversion of hyperbolic polaritons across different dispersion orders by breaking the structure symmetry in engineered step-shape van der Waals (vdW) terraces. The mode conversion from the fundamental to high-order hyperbolic polaritons is imaged using scattering-type scanning near-field optical microscopy (s-SNOM) on both hexagonal boron nitride (hBN) and alpha-phase molybdenum trioxide (α-MoO3) vdW terraces. Our s-SNOM data, augmented with electromagnetics simulations, further demonstrate the alteration of polariton mode conversion by varying the step size of vdW terraces. The mode conversion reported here offers a practical approach toward integrating previously independent different-order hyperbolic polaritons with ultra-high momenta, paving the way for promising applications in nano-optical circuits, sensing, computation, information processing, and super-resolution imaging. 
    more » « less