skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 29, 2026

Title: Short-term wind forecasting via surface pressure measurements: Stochastic modeling and sensor placement
We propose a short-term wind forecasting framework for predicting real-time variations in atmospheric turbulence based on nacelle-mounted anemometer and ground-level air-pressure measurements. Our approach combines linear stochastic estimation and Kalman filtering algorithms to assimilate and process real-time field measurements with the predictions of a stochastic reduced-order model that is confined to a two-dimensional plane at the hub height of turbines. We bridge the vertical gap between the computational plane of the model at hub height and the measurement plane on the ground using a projection technique that allows us to infer the pressure in one plane from the other. Depending on the quality of this inference, we show that customized variants of the extended and ensemble Kalman filters can be tuned to balance estimation quality and computational speed 1–1.5 diameters ahead and behind leading turbines. In particular, we show how synchronizing the sign of estimates with that of velocity fluctuations recorded at the nacelle can significantly improve the ability to follow temporal variations upwind of the leading turbine. We also propose a convex optimization-based framework for selecting a subset of pressure sensors that achieve a desired level of accuracy relative to the optimal Kalman filter that uses all sensing capabilities.  more » « less
Award ID(s):
1916776
PAR ID:
10658220
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Journal of Renewable and Sustainable Energy
Volume:
17
Issue:
1
ISSN:
1941-7012
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Modifying turbine blade pitch, generator torque, and nacelle direction (yaw) are conventional approaches for enhancing energy output and alleviating structural loads. However, the efficacy of such methods is challenged by the lag in adjusting such settings after atmospheric variations are detected. Without reliable short-term wind forecasting tools, current practice, which mostly relies on data collected at or just behind turbines, can result in sub-optimal performance. Data-assimilation strategies can achieve real-time wind forecasting capabilities by correcting model-based predictions of the incoming wind using various field measurements. In this paper, we revisit the development of a class of prior models for real-time estimation via Kalman filtering algorithms that track atmospheric variations using ground-level pressure sensors. This class of models is given by the stochastically forced linearized Navier-Stokes equations around the three-dimensional waked velocity profile defined by a curled wake model. The stochastic input to these models is devised using convex optimization to achieve statistical consistency with high-fidelity large-eddy simulations. We demonstrate the ability of such models in reproducing the second-order statistical signatures of the turbulent velocity field. In support of assimilating ground-level pressure measurements with the predictions of said models, we also highlight the significance of the wall-normal dimension in enhancing two-point correlations of the pressure field between the ground and the computational domain. 
    more » « less
  2. Wind speed and direction variations across the rotor affect power production. As utility‐scale turbines extend higher into the atmospheric boundary layer (ABL) with larger rotor diameters and hub heights, they increasingly encounter more complex wind speed and direction variations. We assess three models for power production that account for wind speed and direction shear. Two are based on actuator disc representations, and the third is a blade element representation. We also evaluate the predictions from a standard power curve model that has no knowledge of wind shear. The predictions from each model, driven by wind profile measurements from a profiling LiDAR, are compared to concurrent power measurements from an adjacent utility‐scale wind turbine. In the field measurements of the utility‐scale turbine, discrete combinations of speed and direction shear induce changes in power production of −19% to +34% relative to the turbine power curve for a given hub height wind speed. Positive speed shear generally corresponds to over‐performance and increasing magnitudes of direction shear to greater under‐performance, relative to the power curve. Overall, the blade element model produces both higher correlation and lower error relative to the other models, but its quantitative accuracy depends on induction and controller sub‐models. To further assess the influence of complex, non‐monotonic wind profiles, we also drive the models with best‐fit power law wind speed profiles and linear wind direction profiles. These idealized inputs produce qualitative and quantitative differences in power predictions from each model, demonstrating that time‐varying, non‐monotonic wind shear affects wind power production. 
    more » « less
  3. Abstract Quantification of the performance degradation on the annual energy production (AEP) of a wind farm due to leading‐edge (LE) erosion of wind turbine blades is important to design cost‐effective maintenance plans and timely blade retrofit. In this work, the effects of LE erosion on horizontal axis wind turbines are quantified using infrared (IR) thermographic imaging of turbine blades, as well as meteorological and SCADA data. The average AEP loss of turbines with LE erosion is estimated from SCADA and meteorological data to be between 3% and 8% of the expected power capture. The impact of LE erosion on the average power capture of the turbines is found to be higher at lower hub‐height wind speeds (peak around 50% of the turbine rated wind speed) and at lower turbulence intensity of the incoming wind associated with stable atmospheric conditions. The effect of LE erosion is investigated with IR thermography to identify the laminar to turbulent transition (LTT) position over the airfoils of the turbine blades. Reduction in the laminar flow region of about 85% and 87% on average in the suction and pressure sides, respectively, is observed for the airfoils of the investigated turbines with LE erosion. Using the observed LTT locations over the airfoils and the geometry of the blade, an average AEP loss of about 3.7% is calculated with blade element momentum simulations, which is found to be comparable with the magnitude of AEP loss estimated through the SCADA data. 
    more » « less
  4. Zhang, Qichun (Ed.)
    We develop a general framework for state estimation in systems modeled with noise-polluted continuous time dynamics and discrete time noisy measurements. Our approach is based on maximum likelihood estimation and employs the calculus of variations to derive optimality conditions for continuous time functions. We make no prior assumptions on the form of the mapping from measurements to state-estimate or on the distributions of the noise terms, making the framework more general than Kalman filtering/smoothing where this mapping is assumed to be linear and the noises Gaussian. The optimal solution that arises is interpreted as a continuous time spline, the structure and temporal dependency of which is determined by the system dynamics and the distributions of the process and measurement noise. Similar to Kalman smoothing, the optimal spline yields increased data accuracy at instants when measurements are taken, in addition to providing continuous time estimates outside the measurement instances. We demonstrate the utility and generality of our approach via illustrative examples that render both linear and nonlinear data filters depending on the particular system. Application of the proposed approach to a Monte Carlo simulation exhibits significant performance improvement in comparison to a common existing method. 
    more » « less
  5. null (Ed.)
    Abstract. The LiDAR Statistical Barnes Objective Analysis (LiSBOA), presented in Letizia et al. (2021), is a procedure for the optimal design of lidar scans and calculations over a Cartesian grid of the statistical moments of the velocity field. Lidar data collected during a field campaign conducted at a wind farm in complex terrain are analyzed through LiSBOA for two different tests. For both case studies, LiSBOA is leveraged for the optimization of the azimuthal step of the lidar and the retrieval of the mean equivalent velocity and turbulence intensity fields. In the first case, the wake velocity statistics of four utility-scale turbines are reconstructed on a 3D grid, showing LiSBOA's ability to capture complex flow features, such as high-speed jets around the nacelle and the wake turbulent-shear layers. For the second case, the statistics of the wakes generated by four interacting turbines are calculated over a 2D Cartesian grid and compared to the measurements provided by the nacelle-mounted anemometers. Maximum discrepancies, as low as 3 % for the mean velocity (with respect to the free stream velocity) and turbulence intensity (in absolute terms), endorse the application of LiSBOA for lidar-based wind resource assessment and diagnostic surveys for wind farms. 
    more » « less