In cold climates, ice formation on wind turbines causes power reduction produced by a wind farm. This paper introduces a framework to predict icing at the farm level based on our recently developed Temporal Convolutional Network prediction model for a single turbine using SCADA data.First, a cross-validation study is carried out to evaluate the extent predictors trained on a single turbine of a wind farm can be used to predict icing on the other turbines of a wind farm. This fusion approach combines multiple turbines, thereby providing predictions at the wind farm level. This study shows that such a fusion approach improves prediction accuracy and decreases fluctuations across different prediction horizons when compared with single-turbine prediction. Two approaches are considered to conduct farm-level icing prediction: decision fusion and feature fusion. In decision fusion, icing prediction decisions from individual turbines are combined in a majority voting manner. In feature fusion, features of individual turbines are averaged first before conducting prediction. The results obtained indicate that both the decision fusion and feature fusion approaches generate farm-level icing prediction accuracies that are 7% higher with lower standard deviations or fluctuations across different prediction horizons when compared with predictions for a single turbine.
more »
« less
An Ensemble Network for High-Accuracy and Long-Term Forecasting of Icing on Wind Turbines
Freezing of wind turbines causes loss of wind-generated power. Forecasting or prediction of icing on wind turbine blades based on SCADA sensor data allows taking appropriate actions before icing occurs. This paper presents a newly developed deep learning network model named PCTG (Parallel CNN-TCN GRU) for the purpose of high-accuracy and long-term prediction of icing on wind turbine blades. This model combines three networks, the CNN, TCN, and GRU, in order to incorporate both the temporal aspect of SCADA time-series data as well as the dependencies of SCADA variables. The experimentations conducted by using this model and SCADA data from three wind turbines in a wind farm have generated average prediction accuracies of about 97% for prediction horizons of up to 2 days ahead. The developed model is shown to maintain at least 95% prediction accuracy for long prediction horizons of up to 22 days ahead. Furthermore, for another wind farm SCADA dataset, it is shown that the developed PCTG model achieves over 99% icing prediction accuracy 10 days ahead.
more »
« less
- Award ID(s):
- 1916776
- PAR ID:
- 10658229
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 24
- Issue:
- 24
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 8167
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Icing on the blades of wind turbines during winter seasons causes a reduction in power and revenue losses. The prediction of icing before it occurs has the potential to enable mitigating actions to reduce ice accumulation. This paper presents a framework for the prediction of icing on wind turbines based on Supervisory Control and Data Acquisition (SCADA) data without requiring the installation of any additional icing sensors on the turbines. A Temporal Convolutional Network is considered as the model to predict icing from the SCADA data time series. All aspects of the icing prediction framework are described, including the necessary data preprocessing, the labeling of SCADA data for icing conditions, the selection of informative icing features or variables in SCADA data, and the design of a Temporal Convolutional Network as the prediction model. Two performance metrics to evaluate the prediction outcome are presented. Using SCADA data from an actual wind turbine, the model achieves an average prediction accuracy of 77.6% for future times of up to 48 h.more » « less
-
A field campaign was carried out to investigate ice accretion features on large turbine blades (50 m in length) and to assess power output losses of utility-scale wind turbines induced by ice accretion. After a 30-h icing incident, a high-resolution digital camera carried by an unmanned aircraft system was used to capture photographs of iced turbine blades. Based on the obtained pictures of the frozen blades, the ice layer thickness accreted along the blades’ leading edges was determined quantitatively. While ice was found to accumulate over whole blade spans, outboard blades had more ice structures, with ice layers reaching up to 0.3 m thick toward the blade tips. With the turbine operating data provided by the turbines’ supervisory control and data acquisition systems, icing-induced power output losses were investigated systematically. Despite the high wind, frozen turbines were discovered to rotate substantially slower and even shut down from time to time, resulting in up to 80% of icing-induced turbine power losses during the icing event. The research presented here is a comprehensive field campaign to characterize ice accretion features on full-scaled turbine blades and systematically analyze detrimental impacts of ice accumulation on the power generation of utility-scale wind turbines. The research findings are very useful in bridging the gaps between fundamental icing physics research carried out in highly idealized laboratory settings and the realistic icing phenomena observed on utility-scale wind turbines operating in harsh natural icing conditions.more » « less
-
Abstract Quantification of the performance degradation on the annual energy production (AEP) of a wind farm due to leading‐edge (LE) erosion of wind turbine blades is important to design cost‐effective maintenance plans and timely blade retrofit. In this work, the effects of LE erosion on horizontal axis wind turbines are quantified using infrared (IR) thermographic imaging of turbine blades, as well as meteorological and SCADA data. The average AEP loss of turbines with LE erosion is estimated from SCADA and meteorological data to be between 3% and 8% of the expected power capture. The impact of LE erosion on the average power capture of the turbines is found to be higher at lower hub‐height wind speeds (peak around 50% of the turbine rated wind speed) and at lower turbulence intensity of the incoming wind associated with stable atmospheric conditions. The effect of LE erosion is investigated with IR thermography to identify the laminar to turbulent transition (LTT) position over the airfoils of the turbine blades. Reduction in the laminar flow region of about 85% and 87% on average in the suction and pressure sides, respectively, is observed for the airfoils of the investigated turbines with LE erosion. Using the observed LTT locations over the airfoils and the geometry of the blade, an average AEP loss of about 3.7% is calculated with blade element momentum simulations, which is found to be comparable with the magnitude of AEP loss estimated through the SCADA data.more » « less
-
Abstract The power performance and the wind velocity field of an onshore wind farm are predicted with machine learning models and the pseudo‐2D RANS model, then assessed against SCADA data. The wind farm under investigation is one of the sites involved with the American WAKE experimeNt (AWAKEN). The performed simulations enable predictions of the power capture at the farm and turbine levels while providing insights into the effects on power capture associated with wake interactions that operating upstream turbines induce, as well as the variability caused by atmospheric stability. The machine learning models show improved accuracy compared to the pseudo‐2D RANS model in the predictions of turbine power capture and farm power capture with roughly half the normalized error. The machine learning models also entail lower computational costs upon training. Further, the machine learning models provide predictions of the wind turbulence intensity at the turbine level for different wind and atmospheric conditions with very good accuracy, which is difficult to achieve through RANS modeling. Additionally, farm‐to‐farm interactions are noted, with adverse impacts on power predictions from both models.more » « less
An official website of the United States government

