skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: Fully 3D-Printed mm-Wave Wide-Angle 1D Beam-Steering Antenna Using Zigzagged Lens Antenna Subarrays With Curved Focal Surfaces
This paper presents a fully 3D-printed wideband mm-wave beam-steering antenna concept capable of performing wide-angle electronic beam-steering by making use of zigzagged lens antenna subarrays (LASs) with curved focal surfaces. The concept is demonstrated through the design and realization of a 38 GHz antenna consisting of L=4 dielectric slab waveguide (DSW) lenses each fed with structurally embedded M=6 TEM horn antennas, which can effectively reduce the required number of phase shifters (PSs) from N=M×L=24 to L=4 . It is demonstrated that the joint utilization of zigzagged LAS and curved focal surfaces with structurally integrated TEM horn antennas, all enabled through the design flexibilities offered by the emerging additive manufacturing (AM) technology, improves the realized gain, side lobe level (SLL), and beam-steering range in comparison to the earlier versions realized with planar focal surfaces. Specifically, the antenna exhibits a simulated realized gain of 16.5 dBi with an H-plane beam-steering range exceeding ±45° and a half-power beamwidth (HPBW) of 4.5° while maintaining an SLL below –9.3 dB across the entirety of the scan range. Measurements taken with the manufactured antenna prototype show excellent agreement with the performance obtained from full-wave simulations.  more » « less
Award ID(s):
1923857
PAR ID:
10658972
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Open Journal of Antennas and Propagation
Volume:
6
Issue:
5
ISSN:
2637-6431
Page Range / eLocation ID:
1582 to 1594
Subject(s) / Keyword(s):
Lenses, Antenna feeds, Antennas, Horn antennas, Gain measurement, Phased arrays, Apertures, Microwave antennas, Three-dimensional printing, Geometry
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Indoor blockage in a millimeter wave (mmWave) wireless communication link introduces significant signal attenuation. Solving the indoor blockage problem is critical to effectively using the unlicensed 60 GHz band spectrum. This work used various V-band horn antennas to collect signal measurements in an indoor lab environment. As an object blocks the Tx- Rx line of sight (LOS) path, the signal fades deeply. Experimental results showed that switching to a wider beam with lower gain has the potential to partially restore or maintain a communicating link. Effective beam switching and coordinated beam steering can shorten deep fades which is crucial for mm Wave communication systems that are very sensitive to the spatial characteristics of the environment. The experimental results in this paper thus motivate the design of future indoor mm Wave antennas capable of beam switching and facilitate fast beam search. 
    more » « less
  2. null (Ed.)
    Due to the exponential growth of small satellite technology, novel shapes for antennas have been explored to make them low-cost, lightweight, compact, and easy to deploy. The use of frequency beam-scan antennas reduces the complexity of the small satellite front-end by avoiding the need to use phase shifters, especially when a reliable inter-satellite link (ISL) is required to keep up the communication and the formation accurately in a CubeSat swarm mission. This paper reports the design and a manufacturing process focused on in-space manufacturing (ISM) of a fully 3D-printed leaky-wave antenna, using ULTEM 9085 for aerospace applications. The antenna shows frequency beam steering capabilities from 4.4 GHz to 7.4 GHz, and a gain reconfigurable by angular rotation of the ground planes. The resulting antenna shows a measured peak gain of 10.07 dBi at 6.5 GHz, with a gain reconfigurability, as function of the elevation angle of the ground planes, in the range of 0 to 40°, providing an additional gain from 0 to 2 dBi, respectively. 
    more » « less
  3. This paper presents a flexible 10 × 10 phased-array antenna for efficient and high-gain 3D beam steering applications. The proposed antenna array consists of 25 quadrants of 2 × 2 unit cells, wherein each 2 × 2 unit cell is coaxially fed. The 45° phase shifting lines are incorporated in the feeding paths to facilitate the wide beamsteering range. The dimensions of the proposed phased array antenna (PAA) are 90 × 90 × 0.324 mm 3 . Simulation results show that the proposed phased-array antenna has a resonating frequency at 24 GHz with an operational bandwidth from 23.64 GHz to 24.31 GHz along with a high gain of 29.4 dBi. The array exhibits a maximum beam steering range of 149.8° in the θ axis and 120° in the ϕ axis with a gain variation less than 0.9 dBi. The proposed flexible PAA is suitable for its placement on curved surfaces of autonomous vehicles such as UAVs(Unmanned aerial vehicles). 
    more » « less
  4. Abstract: This paper includes design and implementation result of an adaptive beam forming antenna for upcoming 5G and Internet of Things (IoT). Switched parasitic array antennas are low cost, small sized and compact circular array antennas that steer beam in a desired direction by variation in switching pattern of parasitic elements. The proposed antenna design has an active center element, which is surrounded by several symmetrically placed parasitic elements. The designed antenna has a gain of 8 dB and is capable of 360 degrees beam steering in steps of 60 degrees each. Simulations are validated with results of the fabricated antenna. Antenna beam is steered by controlling parasitic elements. Future application of Electronically Steerable Parasitic Array Radiator (ESPAR) antennas and switched parasitic array antennas in next generation communication networks and methods for reducing size of the antenna are also highlighted. 
    more » « less
  5. A circular polarized (CP) pentaband antenna based on the aperture-in-aperture (AIA) concept is presented for CubeSat applications. This AIA consists of five different bands ranging from L-band to Ka-band. Four different antennas, each operating at a specific frequency band, namely 12 GHz, 18.5 GHz, 26 GHz, and 32 GHz, were incorporated into an L-band (viz. 1.5 GHz) antenna. Notably, the five antennas can operate simultaneously for a CubeSat downlink operation with a frequency ratio of 21.3:1. The antenna structure shows a realized gain of 5–10 dBi with good CP bandwidth (< 3 dB) across the overall operational frequency range. That is, the realized gain of L-band (1.5 GHz), X-band (12.5 GHz), K-band1 (18.5 GHz), K-band2 (26 GHz), and Ka-bands (32 GHz) are 5.05 dBi, 8.21 dBi, 7.33 dBi, 7.97 dBi, and 8.56 dBi. A high impedance surface (HIS) is incorporated with the Ka-band antenna to mitigate the ripples in the radiation pattern created by the interference of surface waves. A prototype was fabricated and tested. The measurement data agrees well with the simulation. 
    more » « less