Federated learning (FL) is a learning paradigm that allows the central server to learn from different data sources while keeping the data private locally. Without controlling and monitoring the local data collection process, the locally available training labels are likely noisy, i.e., the collected training labels differ from the unobservable ground truth. Additionally, in heterogenous FL, each local client may only have access to a subset of label space (referred to as openset label learning), meanwhile without overlapping with others. In this work, we study the challenge of FL with local openset noisy labels. We observe that many existing solutions in the noisy label literature, e.g., loss correction, are ineffective during local training due to overfitting to noisy labels and being not generalizable to openset labels. For the methods in FL, different estimated metrics are shared. To address the problems, we design a label communication mechanism that shares "contrastive labels" randomly selected from clients with the server. The privacy of the shared contrastive labels is protected by label differential privacy (DP). Both the DP guarantee and the effectiveness of our approach are theoretically guaranteed. Compared with several baseline methods, our solution shows its efficiency in several public benchmarks and real-world datasets under different noise ratios and noise models.
more »
« less
Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM
Federated learning (FL) enables distributed resource- constrained devices to jointly train shared models while keeping the training data local for privacy purposes. Vertical FL (VFL), which allows each client to collect partial features, has attracted intensive research efforts recently. We identified the main challenges that existing VFL frameworks are facing: the server needs to communicate gradients with the clients for each training step, incurring high communication cost that leads to rapid consumption of privacy budgets. To address these challenges, in this paper, we introduce a VFL framework with multiple heads (VIM ), which takes the separate contribution of each client into account, and enables an efficient decomposition of the VFL optimization objective to sub-objectives that can be iteratively tackled by the server and the clients on their own. In particular, we propose an Alternating Direction Method of Multipliers (ADMM)- based method to solve our optimization problem, which allows clients to conduct multiple local updates before communication, and thus reduces the communication cost and leads to better performance under differential privacy (DP). We provide the client-level DP mechanism for our framework to protect user privacy. Moreover, we show that a byproduct of VIM is that the weights of learned heads reflect the importance of local clients. We conduct extensive evaluations and show that on four vertical FL datasets, VIM achieves significantly higher performance and faster convergence compared with the state-of-the-art. We also explicitly evaluate the importance of local clients and show that VIM enables functionalities such as client-level explanation and client denoising. We hope this work will shed light on a new way of effective VFL training and understanding.
more »
« less
- Award ID(s):
- 2229876
- PAR ID:
- 10662044
- Publisher / Repository:
- IEEE
- Date Published:
- Page Range / eLocation ID:
- 443 to 471
- Format(s):
- Medium: X
- Location:
- Toronto, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Standard ML relies on training using a centrally collected dataset, while collaborative learning techniques such as Federated Learning (FL) enable data to remain decentralized at client locations. In FL, a central server coordinates the training process, reducing computation and communication expenses for clients. However, this centralization can lead to server congestion and heightened risk of malicious activity or data privacy breaches. In contrast, Peer-to-Peer Learning (P2PL) is a fully decentralized system where nodes manage both local training and aggregation tasks. While P2PL promotes privacy by eliminating the need to trust a single node, it also results in increased computation and communication costs, along with potential difficulties in achieving consensus among nodes. To address the limitations of both FL and P2PL, we propose a hybrid approach called Hubs-and-Spokes Learning (HSL). In HSL, hubs function similarly to FL servers, maintaining consensus but exerting less control over spokes. This paper argues that HSL’s design allows for greater availability and privacy than FL, while reducing computation and communication costs compared to P2PL. Additionally, HSL maintains consensus and integrity in the learning process.more » « less
-
Standard federated learning (FL) algorithms typically require multiple rounds of communication between the server and the clients, which has several drawbacks, including requiring constant network connectivity, repeated investment of computational resources, and susceptibility to privacy attacks. One-Shot FL is a new paradigm that aims to address this challenge by enabling the server to train a global model in a single round of communication. In this work, we present FedFisher, a novel algorithm for one-shot FL that makes use of Fisher information matrices computed on local client models, motivated by a Bayesian perspective of FL. First, we theoretically analyze FedFisher for two-layer over-parameterized ReLU neural networks and show that the error of our one-shot FedFisher global model becomes vanishingly small as the width of the neural networks and amount of local training at clients increases. Next, we propose practical variants of FedFisher using the diagonal Fisher and K-FAC approximation for the full Fisher and highlight their communication and compute efficiency for FL. Finally, we conduct extensive experiments on various datasets, which show that these variants of FedFisher consistently improve over competing baselines.more » « less
-
This paper studies a distributed optimization problem in the federated learning (FL) framework under differential privacy constraints, whereby a set of clients having local samples are connected to an untrusted server, who wants to learn a global model while preserving the privacy of clients’ local datasets. We propose a new client sampling called self-sampling that reflects the random availability of clients in the learning process in FL. We analyze the differential privacy of the SGD with client self-sampling by composing amplification by sub-sampling along with amplification by shuffling. Furthermore, we analyze the convergence of the proposed SGD algorithm showing that we can get a reasonable learning performance while preserving the privacy of clients’ data even with client self-sampling.more » « less
-
Federated learning (FL) is an increasingly popular approach for machine learning (ML) when the training dataset is highly distributed. Clients perform local training on their datasets and the updates are then aggregated into the global model. Existing protocols for aggregation are either inefficient or don’t consider the case of malicious actors in the system. This is a major barrier to making FL an ideal solution for privacy-sensitive ML applications. In this talk, I will present ELSA, a secure aggregation protocol for FL that breaks this barrier - it is efficient and addresses the existence of malicious actors (clients + servers) at the core of its design. Similar to prior work Prio and Prio+, ELSA provides a novel secure aggregation protocol built out of distributed trust across two servers that keeps individual client updates private as long as one server is honest, defends against malicious clients, and is efficient end-to-end. Compared to prior works, the distinguishing theme in ELSA is that instead of the servers generating cryptographic correlations interactively, the clients act as untrusted dealers of these correlations without compromising the protocol’s security. This leads to a much faster protocol while also achieving stronger security at that efficiency compared to prior work. We introduce new techniques that retain privacy even when a server is malicious at a small added cost of 7-25% in runtime with a negligible increase in communication over the case of a semi-honest server. ELSA improves end-to-end runtime over prior work with similar security guarantees by big margins - single-aggregator RoFL by up to 305x (for the models we consider), and distributed-trust Prio by up to 8x (with up to 16x faster server-side protocol). Additionally, ELSA can be run in a bandwidth-saver mode for clients who are geographically bandwidth-constrained - an important property that is missing from prior works.more » « less
An official website of the United States government

