- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
01100000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Adderson, Matthew (2)
-
Drager, Steven (2)
-
Kong, Fanxin (2)
-
Burbano, Luis (1)
-
Cardenas, Alvaro A (1)
-
Chen, Xin (1)
-
Liu, Mengyu (1)
-
Xu, Weizhe (1)
-
Zhang, Lin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cyber-Physical Systems (CPS) are integrations of computation, networking, and physical processes. The autonomy and self-adaptation capabilities of CPS mark a significant evolution from traditional control systems. Machine learning significantly enhances the functionality and efficiency of Cyber-Physical Systems (CPS). Large Language Models (LLM), like GPT-4, can augment CPS’s functionality to a new level by providing advanced intelligence support. This fact makes the applications above potentially unsafe and thus untrustworthy if deployed to the real world. We propose a comprehensive and general assurance framework for LLM-enabled CPS. The framework consists of three modules: (i) the context grounding module assures the task context has been accurately grounded (ii) the temporal Logic requirements specification module forms the temporal requirements into logic specifications for prompting and further verification (iii) the formal verification module verifies the output of the LLM and provides feedback as a guideline for LLM. The three modules execute iteratively until the output of LLM is verified. Experiment results demonstrate that our assurance framework can assure the LLM-enabled CPS.more » « lessFree, publicly-accessible full text available May 13, 2025
-
Zhang, Lin ; Burbano, Luis ; Chen, Xin ; Cardenas, Alvaro A ; Drager, Steven ; Adderson, Matthew ; Kong, Fanxin ( , IEEE Real-Time and Embedded Technology and Applications Symposium)Cyber-physical systems tightly integrate computational resources with physical processes through sensing and actuating, widely penetrating various safety-critical domains, such as autonomous driving, medical monitoring, and industrial control. Unfortunately, they are susceptible to assorted attacks that can result in injuries or physical damage soon after the system is compromised. Consequently, we require mechanisms that swiftly recover their physical states, redirecting a compromised system to desired states to mitigate hazardous situations that can result from attacks. However, existing recovery studies have overlooked stochastic uncertainties that can be unbounded, making a recovery infeasible or invalidating safety and real-time guarantees. This paper presents a novel recovery approach that achieves the highest probability of steering the physical states of systems with stochastic uncertainties to a target set rapidly or within a given time. Further, we prove that our method is sound, complete, fast, and has low computational complexity if the target set can be expressed as a strip. Finally, we demonstrate the practicality of our solution through the implementation in multiple use cases encompassing both linear and nonlinear dynamics, including robotic vehicles, drones, and vehicles in high-fidelity simulators.more » « lessFree, publicly-accessible full text available May 13, 2025