Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Schmidt, A. ; Väänänen, K. ; Goyal, T. ; Kristensson, P. O. ; Peters, A. ; Mueller, S. ; Williamson, J. R. ; Wilson, M. L. (Ed.)Enabling students to dynamically transition between individual and collaborative learning activities has great potential to support better learning. We explore how technology can support teachers in orchestrating dynamic transitions during class. Working with five teachers and 199 students over 22 class sessions, we conducted classroom-based prototyping of a co-orchestration technology ecosystem that supports the dynamic pairing of students working with intelligent tutoring systems. Using mixed-methods data analysis, we study the resulting observed classroom dynamics, and how teachers and students perceived and experienced dynamic transitions as supported by our technology. We discover a potential tension between teachers’ and students’ preferred level of control: students prefer more control over the dynamic transitions that teachers are hesitant to grant. Our study reveals design implications and challenges for future human-AI co-orchestration in classroom use, bringing us closer to realizing the vision of highly-personalized smart classrooms that can address the unique needs of each student.more » « less
-
Abstract Artificial intelligence (AI) can enhance teachers' capabilities by sharing control over different parts of learning activities. This is especially true for complex learning activities, such as dynamic learning transitions where students move between individual and collaborative learning in un‐planned ways, as the need arises. Yet, few initiatives have emerged considering how shared responsibility between teachers and AI can support learning and how teachers' voices might be included to inform design decisions. The goal of our article is twofold. First, we describe a secondary analysis of our co‐design process comprising six design methods to understand how teachers conceptualise sharing control with an AI co‐orchestration tool, called
Pair‐Up . We worked with 76 middle school math teachers, each taking part in one to three methods, to create a co‐orchestration tool that supports dynamic combinations of individual and collaborative learning using two AI‐based tutoring systems. We leveraged qualitative content analysis to examine teachers' views about sharing control withPair‐Up , and we describe high‐level insights about the human‐AI interaction, including control, trust, responsibility, efficiency, and accuracy. Secondly, we use our results as an example showcasing how human‐centred learning analytics can be applied to the design of human‐AI technologies and share reflections for human‐AI technology designers regarding the methods that might be fruitful to elicit teacher feedback and ideas. Our findings illustrate the design of a novel co‐orchestration tool to facilitate the transitions between individual and collaborative learning and highlight considerations and reflections for designers of similar systems.Practitioner notes What is already known about this topic:
Artificial Intelligence (AI) can help teachers facilitate complex classroom activities, such as having students move between individual and collaborative learning in unplanned ways.
Designers should use human‐centred design approaches to give teachers a voice in deciding what AI might do in the classroom and if or how they want to share control with it.
What this paper adds:
Presents teacher views about how they want to share control with AI to support students moving between individual and collaborative learning.
Describes how we adapted six design methods to design AI features.
Illustrates a complete, iterative process to create human‐AI interactions to support teachers as they facilitate students moving from individual to collaborative learning.
Implications for practice:
We share five implications for designers that teachers highlighted as necessary when designing AI‐features, including control, trust, responsibility, efficiency and accuracy.
Our work also includes a reflection on our design process and implications for future design processes.
-
Abstract Recent work has explored how complementary strengths of humans and artificial intelligence (AI) systems might be productively combined. However, successful forms of human–AI partnership have rarely been demonstrated in real‐world settings. We present the iterative design and evaluation of Lumilo, smart glasses that help teachers help their students in AI‐supported classrooms by presenting real‐time analytics about students’ learning, metacognition, and behavior. Results from a field study conducted in K‐12 classrooms indicate that students learn more when teachers and AI tutors work together during class. We discuss implications of this research for the design of human–AI partnerships. We argue for more participatory approaches to research and design in this area, in which practitioners and other stakeholders are deeply, meaningfully involved throughout the process. Furthermore, we advocate for theory‐building and for principled approaches to the study of human–AI decision‐making in real‐world contexts.
-
null (Ed.)Despite the potential of spatial displays for supporting teachers’ classroom orchestration through real-time classroom analytics, the process to design these displays is a challenging and under-explored topic in the learning analytics (LA) community. This paper proposes a mid-fidelity Virtual Prototyping method (VPM), which involves simulating a classroom environment and candidate designs in virtual space to address these challenges. VPM allows for rapid prototyping of spatial features, requires no specialized hardware, and enables teams to conduct remote evaluation sessions. We report observations and findings from an initial exploration with five potential users through a design process utilizing VPM to validate designs for an AR-based spatial display in the context of middle-school orchestration tools. We found that designs created using virtual prototyping sufficiently conveyed a sense of three-dimensionality to address subtle design issues like occlusion and depth perception. We discuss the opportunities and limitations of applying virtual prototyping, particularly its potential to allow for more robust co-design with stakeholders earlier in the design process.more » « less
-
AI-based educational technologies may be most welcome in classrooms when they align with teachers' goals, preferences, and instructional practices. Teachers, however, have scarce time to make such customizations themselves. How might the crowd be leveraged to help time-strapped teachers? Crowdsourcing pipelines have traditionally focused on content generation. It is an open question how a pipeline might be designed so the crowd can succeed in a revision/customization task. In this paper, we explore an initial version of a teacher-guided crowdsourcing pipeline designed to improve the adaptive math hints of an AI-based tutoring system so they fit teachers' preferences, while requiring minimal expert guidance. In two experiments involving 144 math teachers and 481 crowdworkers, we found that such an expert-guided revision pipeline could save experts' time and produce better crowd-revised hints (in terms of teacher satisfaction) than two comparison conditions. The revised hints however, did not improve on the existing hints in the AI tutor, which were carefully-written but still have room for improvement and customization. Further analysis revealed that the main challenge for crowdworkers may lie in understanding teachers' brief written comments and implementing them in the form of effective edits, without introducing new problems. We also found that teachers preferred their own revisions over other sources of hints, and exhibited varying preferences for hints. Overall, the results confirm that there is a clear need for customizing hints to individual teachers' preferences. They also highlight the need for more elaborate scaffolds so the crowd can have specific knowledge of the requirements that teachers have for hints. The study represents a first exploration in the literature of how to support crowds with minimal expert guidance in revising and customizing instructional materials.more » « less
-
As artificial intelligence (AI) increasingly enters K-12 classrooms, what do teachers and students see as the roles of human versus AI instruction, and how might educational AI (AIED) systems best be designed to support these complementary roles? We explore these questions through participatory design and needs validation studies with K-12 teachers and students. Using human-centered design methods rarely employed in AIED research, this work builds on prior findings to contribute: (1) an analysis of teacher and student feedback on 24 design concepts for systems that integrate human and AI instruction; and (2) participatory speed dating (PSD): a new variant of the speed dating design method, involving iterative concept generation and evaluation with multiple stakeholders. Using PSD, we found that teachers desire greater real-time support from AI tutors in identifying when students need human help, in evaluating the impacts of their own help-giving, and in managing student motivation. Meanwhile, students desire better mechanisms to signal help-need during class without losing face to peers, to receive emotional support from human rather than AI tutors, and to have greater agency over how their personal analytics are used. This work provides tools and insights to guide the design of more effective human–AI partnerships for K-12 education.more » « less